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The scattering approach

Among the familiar examples of scattering phenomena, the most conspicuous
are probably the dispersion of light and the partial transmission and reflection
of electromagnetic waves by refractive media. In the quantum description of
the electronic transport through a potential region V(r), the macroscopic
concepts of resistance and conductance entail also those of reflection and
transmission amplitudes. The celebrated Landauer’s approach to electronic
transport [?], represents a remarkable example of an approach where this
conception is neatly embodied. In this approach the conductance of any 1D
elastically scattering system is written as
2 * 2
g _e 7T (2.1)
mhrr*  7wh R
where ¢t and r are the sample dependent scattering (transmission and reflec-
tion) amplitudes. A large number of derivations and debate papers have been
published [?,?7,7,?] on this formula and its generalization to multichannel 3D
systems. In the next chapter, using the scattering matrix and the basic defi-
nitions that will be introduced here, we will discuss and derive the Landauer
conductance formulas in a very simple and comprehensive way. The relations
of these formulas (4.1) with the traditional linear response theory (LRT) has
been object of great attention and controversy in the literature [?,7]. In the
linear response theory proposed by Kubo [?], the transport properties are
studied following a different conception. These properties are treated as linear
responses to external perturbations that drive the system out of equilibrium.
There is a the large number of books and papers devoted to the LRT. This
theory is beyond the scope of this book. The interested reader is referred, for
instance, to [?,7?].
To use the Landauer formulas to studying the electronic transport through
a given sample, one needs to evaluate the corresponding transmission and
reflection amplitudes. To calculate these backward and forward scattering
probabilities, one needs to solve the Maxwell and the Schrédinger equations.
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To accomplish this aim, the scattering approach plays a complementary role
that, in some cases, may be relevant and crucial.

Studying transport processes, the transfer matrix and the conceptual
structure of the scattering theory appears naturally as the appropriate one
to deal with the Maxwell and Schrédinger equations. In this book we present
well-known and new results of the scattering theory applied to transmission
phenomena in open systems. It is also the purpose of this book to show that
the transfer matrix technique can advantageously be used to study stationary
properties of electromagnetic waves and quantum particles, properties relevant
in the theoretical analysis of optoelectronic phenomena. We will show that the
transfer matrix technique is a powerful tool in the theoretical analysis of the
transport properties of ordered and disordered systems and for the precise
evaluations of fundamental quantities, like the eigenvalues and eigenfunctions
of quantum particles in simple potential regions V' (r) or more complex systems
like the superlattice structures with arbitrary single-cell potential profiles.

We will introduce in this chapter the general framework of the scatter-
ing theory in a comprehensive albeit not so formal presentation. Excellent
and mathematically more rigorous presentations can be found in the litera-
ture, for instance in [?,?]. Although we will devote some chapters to study
electromagnetic waves and electromagnetic pulses through optical media, the
general discussions and derivations will refer mostly to quantum particles and
the Schrodinger equation.

In transport processes it is important to establish the geometry and the
direction along which the electronic motion takes place. Most of the transport
processes of interest occur along a given direction, which we will call, un-
less a magnetic field is present, the z axis or, when appropriate, the growing
direction.

The theoretical procedures to solve the Schrédinger equation of specific
open and closed systems bear some general and common characteristics. We
will review here those mathematical and physical basic properties that will be
used throughout this book.

Usually when the transport processes occur through devices with large
cross sections, it is common to argue the invariance under transverse transla-
tion transformations. In those cases, the number of propagating modes and the
density of transverse states is so large that one can safely decouple the trans-
verse from the longitudinal dynamics, and work in the one-dimensional (1D)
approximation. In other cases, when the transverse dimensions w, ~ w, = w
and the Fermi energy E are small, such that the number of propagating modes
N < mw?E/ 7h? is small, it is in principle feasible and possible to carry out
a multi-mode or multichannel analysis.

We will try to use a unified notation for one-channel (1D) and N-channel
systems. To fix the notation we will introduce and recall well-known expres-
sions and definitions of fundamental quantities in the scattering theory.
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2.0.1 Wave vectors in 1D one-channel systems

If we are dealing with a one-channel 1D system, we have generally to solve
the Schrodinger equation
R d?

— o 9(2) + V(2)e(2) = Bo2). (22)
for all values of z where the system is defined. The solution of this equation
is feasible when the potential is constant, or sectionally constant, while the
solution may be slightly or perhaps much more involved when V' (z) is a non-
constant function. As mentioned in the introduction, the potential functions
in most of the actual devices are stepwise constants. In others not, but one
can use the semiclassical Wenzel-Kramers-Brillouin (WKB) approximation in
the transfer matrix representation (see chapter ??). In the case of sectionally-
constant potential systems like in figure ??, one has to consider a partition
20,21, 29..., 2, Of the z axis, according with the potential discontinuities,with
zo = 0 and z,, = L. The Schrédinger equation is then solved for each constant-
potential region. For open and non biased system the potential at z < 0 and
z > L is usually taken as V(z) = 0 and V(z) = oo for closed or bounded
systems. As long as the potential functions and the boundary conditions are
not specified, the solutions for 0 < z < L are unknown.

In the leads (z < 0 and z > L), where the Schrédinger equation can be
written as

d? 2mE
@go(z) +k%p(2) =0, with k* = %, (2.3)

the solutions are the right (4) and left (-) moving plane waves
0t (2) = Atk (2.4)

The normalization constants will usually be absorbed by the coefficients of
the linear combinations. Hence, the wave functions at z; and z, (at the left
and right hand sides), will be written in the 1D case as

o(z1) =apt(z) +be (2) = ae™ £ he = (2.5)
o(z) = cot(2) +do (2,) = ce?™ + de = (2.6)

In the scattering theory, the wave vectors more that the wave functions are
used. For example, to deal with the scattering matrix we need to define two-
points incoming and outgoing wave vectors like

gbi(zl,zr)(ggj((i))) and qﬁo(zl,z,,)(?)it((z))), (2.7)

and for the transfer matrix M we need to define one point wave vectors like

o= (i) e = () e
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2.0.2 Wave vectors in 3D N-channel systems

Suppose now that we are interested in describing the transport properties
through a potential region V (z,y, z) laterally bounded by infinite hard walls,
with z, extending from z; to 2, and 0 < z < w,,0 < y < w, in the transversal
direction.

In the leads, outside the scattering potential region, i.e. for z < z; and z >
zr where V(z,y,z) = 0, the Schrodinger equation separates into transverse
and longitudinal variables. The wave functions ¢;(z, y) satisfying the equation

g k7 =0 2.9
(5 + ) @30 + K050 = (2.9
with boundary conditions ¢;(0,y) = ¢;(ws,y) = ¢;(z,0) = ¢;(z,wy) = 0,
form a complete set of functions in the transverse variables x and y. In this
equation k% = 71252 /w is the quantized transverse-motion momentum. We
will use below the wave functions ¢;(x,y) to expand the 3D wave function
e(@,y,2).
In the leads, the wave functions ¢;(z) satisfy the homogeneous equation
d? 2 2
T59i(2) + (2 = 1,)0(2) =0, (2.10)

with k2 = 2mE/h® the Fermi wave number. For /4:]2 = k? — k%j > 0, the
solutions are running waves and are referred to as propagating modes or open
channels. In this case the wave functions at z and z,. (at the left and right
hand sides), are the linear combinations

N

o(z) = Z la; ©; () + b4 o5 ()] aj izt 4 b, e_ikal} , (2.11)

C; etkizr +d; e ki ZT] ,(2.12)

N

=>_ |
J J
N N
Z c;j goj (zr —i—dj <pj zr Z
J J

that generalize those defined in Eqs. (2.5) and (2.6). When k7 = £k — k%j <0,
the solutions decay exponentially and are referred to as closed channels or
evanescent modes.

In some cases it is convenient and necessary to use normalized plane waves.
In those cases we will use the plane waves

iik:jz

SDJ() W

normalized to unit particle current in the propagating mode j.

Some times the spin degrees of freedom have to be considered explicitly.
In those cases the number N of channels factorize as N = N's, with s the
number of spin projections, and the wave functions are written as

(2.13)
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N,s N,s
0(2) =Y ajowl,(2) + D biops,(2) (2.14)
J,0 J,0

For the sake of an easy notation, that usually helps to visualize better the
physical relations, we shall omit the spin index. It will be used in chapter 77
where the spin degree of freedom is relevant.

For the purpose of using a unified notation, the two-points and one point
wave vectors (see Egs. (2.7) and (2.8)) are written now as

s =(0E) = (GE), e
and

o= (000) ee=(0F). el

Here ¢ (2,) and ¢~ (z4), with s = [,r, are the N-dimensional right and left
moving wave vectors

a1y (21) bipy (21)

ste=| 22 | ), o= 2 g, @
anen(21) bven ()

and
i (2) digi (2)

5 )= | 22 |2, eme=| PR 2o )
en () Aoy ()

All these vectors were defined in terms of the plane wave solutions at the
leads. Although these vectors will in the next sections allow us to introduce
the scattering and transfer matrices and some important relations, the main
problem, that of solving the Schrédinger equation for specific scattering re-
gions, remains open and will partially be addressed in this book.

Before concluding this part, let us come back to the beginning, where we
introduced the transverse solutions ¢;(x,y) in the leads of a laterally bounded
potential V (z,y, z). We mentioned there that the 2D functions ¢;(z,y) will
be used to expand 3D functions. In fact,, we can use this complete set of
functions to expand the 3D wave function ¢(z,y, z) in the scattering region,
ie. for z; < z < z, as

o(z,y,2) = Zgbj(m,y)cpj(z) for 2 <z < z,. (2.19)
J

It is worth noticing that for this expansion one has, at least, two choices:
either one uses always the same trigonometric functions satisfying Eq. (2.9) or
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alternatively one uses at each point z, of the scattering region, when available,
the exact transverse solutions ¢;(x,y, z,). In any case one has to deal at the
end with an infinite system of coupled equations.

To make the discussion easier, we will consider from now on only two-
dimensional systems, ignoring the x-direction, and for the expansion purpose
of ¢j(x,y, zp) only the first choice. The second choice will be mentioned latter
when discussing electronic transport in the presence of a transverse electric
field. In the first choice we have ¢;(y) = \/2/wy sinmjy/w,. Substituting the
expanded wave function into the Schrédinger equation, we obtain the system
of coupled equations

h? d?
%@Sﬁj(z) =) Vij(2)pi(2) + (K — kiy)e;(2) = (2.20)
where V;; are the coupling matrix elements

Vij(2) = — /Owydva,z)@(y)asj(y) =12  (221)

Wy

This set of coupled equations is infinite, therefore impossible to solve in gen-
eral. Thus, it is natural to cut at a finite fixed number N, which we call
the channels’ number that, depending on the Fermi energy, may include only
open channels or open plus some closed channels. We will show here that us-
ing the transfer matrix method the coupled equations can, for some systems,
be tackled and the wave functions ¢;(z) determined.

Even though in this book we will be basically concerned with transfer
matrices, the relation of the transfer matrix elements with the scattering am-
plitudes is an essential relation. Studying the transport processes, the scatter-
ing amplitudes are important quantities, and they will be obtained from the
transfer matrices. To understand the relation of the transfer matrix with the
scattering amplitudes we shall introduce some definitions and basic properties
of the scattering matrix.

2.1 The scattering matrix and some basic properties

We know that when a flux of quantum particles approach a potential region,
like in figure 2.1, part of the incoming flux is reflected while the other part
passes through. In the scattering approach, the reflection and the transmission
amplitudes, r and ¢, are fundamental physical quantities. These amplitudes
are fully determined by the incoming flux, the potential function and the
boundary conditions. We will schematically indicate how these amplitudes
are defined. Since the scattering matrix is usually defined in terms of incom-
ing and outgoing functions we will rename, temporally, the right and left
moving modes as incoming or outgoing waves, depending on whether they are
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approaching or leaving the scattering region. This means that a wave function
written as

p(2) = ap®(2) + b (2). (2.22)

can also be written as

o(z) = ¢'(2) + °(2). (2.23)

In fact, if we have a scattering process like the one shown in figure 2.1,

Vi) ¢t =t @

or=roi /q R/\

Fig. 2.1. The incoming wave from the left is partially transmitted and partially
reflected. The scattering amplitudes are ¢t and r respectively

the incoming wave approaches from the left and the outgoing waves are the
reflected and the transmitted ones. Hence, the wave functions at z; and at z,
can be written as

o(21) = pi(2) + ¢ (=), (2.24)
and
e(z) = oi(2r). (2.25)

The relation of the incoming, reflected and transmitted wave functions with
those introduced before is the following

i (z1) = a ot (2) (2.26)

i (z1) =by (1) (2.27)

oi(zr) = c 0" (2r) (2.28)
The reflection and transmission amplitudes r an t are defined such that

vl (21) =1 pi(a) (2.29)

i (zr) =t ¢} (21), (2.30)

It is clear that to determine r and ¢ using these relations, we have still to
obtain the coefficients a, b and c¢. This is possible only when the Schrodinger
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V(z) _
#T‘ = r’ @l
gl w ” DA

Fig. 2.2. N-propagating modes coming from the right are partially transmitted and
partially reflected. The scattering amplitudes are ¢ and r’ respectively

equation, at the interaction region, is solved and all the boundary conditions
fulfilled.

Generally, the scattering processes involve N-propagating modes, as well
as incoming waves from the left and the right hand sides. Let us first gen-
eralize the previous equations and definition for scattering processes with N
propagating modes. In this case the wave functions ¢(2;), ¢} (2;) and ©!(2;)
in (2.26-2.28) become

N
i(z) = Z%’ oF (1) (2.31)
o1 (1) = Z bj ¢ (1) (2.32)

N
Pl =3 s ¢ (a0) (239

To express the last two functions, i.e. ¢ (z) and ¢}(z,), in terms of the in-
coming functions we need to introduce the following transformations

N
brey, () = Y rrja;e; (20), (2.34)
J

N
ckcpz(zr) = Ztkjajgo;r(zl). (2.35)
J

rk; and t; represent the scattering amplitudes from channel j to channel k.
Using these relations, we have

N
07 () = > rrjase) (1) (2.36)
kg
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(zr) = Ztkjajgoj(a), (2.37)

To visualize better the matrices r and ¢, let us define and recall the following
vectors

a1901:(21) blSDi(Zl) Cl@i:(zr)
¢f(2l): a2<p'2“(zl) Qﬂ(zl): bQQD.z“(Zl) Qﬁ(?«'r): CQ‘P.QH(ZT) (2.38)
aney(2) bnpy (21) eNei (zr)

and write the transformation relations (2.34) and (2.35) in the form

¢ () = rdi(z)  and  Gj(z) = tei(a). (2.39)

These relations generalize those in (2.29) and (2.30).

It is equally possible to have, like in figure 2.2, an incoming flux from the
right. In this case, the reflected and transmitted wave vectors will be written
as

Or(z) = ' ¢u(z)  and  @L(a) = t' P (ar), (2.40)

with " and ¢’ the corresponding reflection and transmission amplitudes.

ve) @O—t(q +7r’ gl

ﬂ \~ =

Fig. 2.3. The transmitted and reflected wave vectors give rise to the outgoing wave
vectors at the left and right.

In the most general case, shown in figure 2.3, the incoming waves approach
from the left and from the right. Both waves are reflected and transmitted.
Thus the outgoing waves ¢7(z;) and ¢2(z,) are given by

& (2) =7 ¢i(20) +t' §(2r), (2.41)
$p(zr) =t ¢ (20) + 17 & (2r). (2.42)

Writing these equations in a matrix representation we have

()= (4) ()
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where the scattering matrix

S(zr,21) = <Z f/) (2.44)

appeared naturally. This matrix contains the whole information of the scatter-
ing process in the potential region between z; and z,. Before introducing the
transfer matrices we will briefly comment a couple of properties of the scat-
tering matrix. Properties related with two important physical principles, the
flux conservation and the time reversal invariance and with the composition
rules of the S matrix in successive scattering processes.

2.1.1 Flux Conservation and Time Reversal Invariance

The flux conservation principle is also known as the probability conservation

principle. This property implies that
(G (e -(0e) () ew
) ss(de) e

S1S = 88T = Iy (2.47)

Hence

the scattering matrix is a unitary matrix. The matrix Iyn is the unit matrix

ﬂi * V(z)

a=od +f’¢w*/q R/\
z \’\} -

Fig. 2.4. The left and right moving waves are reverted by complex conjugation.

¢7r0* - (t @i + 7’ @i)*

-—

S
@
r

Z

of dimension 2N x 2N. From this condition we have

N N
D (riglP? + 1) = > (R +Tj) = Ri+ T, = 1 (2.48)

J J
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where R;; and T;; are the reflection and transmission coefficients from channel
j to channel ¢. R; and T; are the total reflection and total transmission to
channel i.

When the physical interactions are time reversal invariant the Hamilto-
nian is symmetric and belongs to the orthogonal universality class, named by
the kind of matrix that diagonalizes the Hamiltonian. It is known that the
complex conjugate of a propagating wave function is equivalent to time re-
versal operation. Therefore, under the time-reversal, the process of figure 2.3
transforms into the process shown in figure 2.4. If the system is time reversal
invariant, the scattering matrix S should also fulfill the relation

() = (o) (). o)

Taking the complex conjugate of this equation, we have

()= (70) (@), 250

From Eq. (2.43) we also have that
; ~1
) = (58) " () -
(%(zr) ) \eoen ) (251)

S* =851 (2.52)

This means that

Using the Flux Conservation requirement of Eq. (2.47) we conclude that, for
time reversal invariant (TRI) systems, the scattering matrix is symmetric, i.e.

S =s5T. (2.53)
Hence
r=r’ =" r' =T : (2.54)

The flux conservation and time reversal invariance requirements on the
scattering matrix will be used at different points of this book. To illustrate
with a simple example let us consider a 1D square barrier potential.

2.1.2 Composition rules of S in successive scattering processes

In transport and conduction problems the propagating particles suffer, gener-
ally, successive scattering processes. Suppose that we have the potential func-
tion as in figure 2.5. For each of the two potential barriers we can identified
the incoming and outgoing vectors and establish the following relations
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V(z)

@' . @°
e P ——= @' ——
-— 1 -— @O e ———

%° | @

Z, Z, Z, z

Fig. 2.5. incoming and outgoing functions in the scattering process by a square
barrier potential.

() =G () s (38 ew
(B) =) () == () e

Notice that in order to refer to the same vectors in (2.55), we have changed in
(2.56) the incoming and outgoing vectors at z5 by the outgoing and incoming
vectors at that point, respectively. The S matrix for the successive scattering
processes is defined as

$z1) ) _ o (S1(21) ) _ [t ((¢i(=1)

() =s (a6 = (1) () (257

The composition rule of the scattering matrices S7 and S to obtain the
matrix S is rather involved. The successive scattering processes is physically
similar to that of an electromagnetic wave through a planar slab (or thin film)
bounded by two semi-infinite media. The electromagnetic waves are transmit-
ted and reflected in each interface an infinity number of times. In fact for the
calculation of the slab reflection and transmission coefficients, one the well-

known method uses the Fresnel coeflicients ry1 and ¢y and rpo and ¢y, and
the infinite summation such

t= tf26i¢tf1 + tfgeid’rfleid’rfgewtfl + tf(6i¢rf1€i¢Tf2)26i¢tf + (2.58)

with ¢ = k - d the phase that the EM wave gains when it moves across the
slab. This sum converges to the well-known Airy formula

tf26i¢tf1

t (2.59)

1= e'PrpeiPrey

If we expand the matrix equations in (2.55) and (2.56) and rewrite them to
express ¢9(z1) and ¢$(z3) in terms of ¢! (z1) and ¢4(23), we have after some
algebra
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1 . 1 .
o — t/ t (3 tl t/ 7
(a0 = (g rrats 11 ) 64Ge0) + o thei )
o 1 i 1 %
¢3(Z3) = t2mt1¢1(21) + (t2I]v—7‘/17“2/r/1t/2 + Té) ¢3(23) (260)
Therefore
/ / 1 /
S _ T1 + tl 711\[ — ’/‘27"/1 T2t1 tl 711\[ — ’/’27”/1 t2
B tor————ti  Th Aty ! (2.61)
N 2Ty — g 12

As one could expect, the matrix elements of the composed S matrix cor-
respond with the Airy formulae, in the limit ¢ — 0. Behind two successive
scattering systems we have a complex physics underlying an infinite number of
scattering processes. If we would increase the number of successive scattering
centers, the mathematics will become not only involved but unmanageable.
Below we will see that, in contradistinction, the transfer-matrix composition
rules are extremely simple and appealing.

2.1.3 The S matrix of a 1D square barrier potential

V(z)
ae i v, ae iz
I 11 111
be ik bye -k
0 b z

Fig. 2.6. incoming and outgoing functions in the scattering process by a square
barrier potential.

In this book we are not concerned with direct calculations of scattering
matrices. The complexity of composition rules of these matrices make them
the less appropriate ones for the kind of systems of interest here. To illustrate
an explicitly calculation of the S matrix, and to visualize some of its properties
and relations with the transfer matrix, we shall however consider here a simple
example: the square barrier potential. Let the square barrier shown in figure
2.6. The potential function is defined by

0 2<0, z>0
V(z>_{vo 0<z<b (2.62)
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This potential function has been used for many years as a simple example
of repulsive potential. It is clear that the constant potentials with sharp
discontinuities were just an approximation, however, with the development
of the epitaxial growing techniques, this kind of potentials with abrupt
changes in the conduction band edge, become possible. If we have the struc-
ture GaAs/Al,Gay_,As/GaAs with a layer Ga;_, Al As of thickness b and
x ~ 0.3, the electrons feel a barrier like in figure 2.6, with V, ~ 0.23eV.

To obtain the scattering matrix of this system, we have to solve the
Schrodinger equation for a given value of the energy E, which we will as-
sume is smaller than V,. The solutions in each of the three regions are:

o1(2) = a1e™ +bre” ™ 2 <0 (2.63)

o (2) = aze™ +bze *F 2> b (2.64)
with k = \/QmE/h2 for regions I and III, and

v1(z) = age?” + bye™%* 0<z<b (2.65)

with ¢ = \/2m(V, — E)/h? for the second region II. The continuity conditions
in z =0 and z = b, give rise to the following equations

a1 +b; = as + by (266)
ik(a1 — bl) = q(ag — bz) (267)

and
ae?’ 4+ bye ™1 = gkt 4 phye R (2.68)

q(a2e?® — bye™ 1) = ik(aze™® — bge*?), (2.69)

which for the purpose of finding the S-matrix can, after some algebra, be
written in the form

Ab; + Bageikb = Fa; + Gbge_ikb

Cby + Daze™ = Hay + Jbge . (2.70)
with
A= H* =i(k® + ¢*)sinhgb , B =J = 2kq,
C = F* = 2kqcosh gb +i(¢* — k*)sinh b , D=G=0. (2.71)

From these equations it is possible to express the outgoing wave functions by
and aze’™? at z = 0 and z = b as functions of the incoming waves in the matrix
representation
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(é ﬁ) <a3belikb> = (i g) (bgealikb) - (2.72)

Multiplying by the inverse of the left hand side matrix, this equation becomes

b1 _ 1 A* B aq
(i) =2 (5 2) (). em

Therefore, the scattering matrix Sp of the square barrier potential is

cER-GH e
It is easy to verify that

SpSf =1 and S, = SF (2.75)
with reflection and transmission amplitudes

i(k? + ¢%) sinh gb

= 2.76
"t 2kq cosh gb + i(q? — k?) sinh ¢gb (2.76)
2kq
tr = 2.77
b 2kq cosh gb — i(g? — k?) sinh gb ( )
fulfilling the well known relation
) + [t = 1. (2.78)

2.2 The transfer matrix and some basic properties

Transfer matrices and their properties were used in thel950s to study elec-
tronic spectra and transport processes through ordered and disordered linear
chains. [?,?] More recently, multichannel-transfer-matrix approaches became
rather common in the scattering approach to quantum wires. [?] Two types
of transfer matrices are most known: the transfer matrix W of the first kind,
relating wave functions and their derivatives at two points or planes of the
scattering region, and the transfer matrix M of the second kind, connecting
state vectors at two points or planes of the scattering region. Transfer matrices
of the first kind were used by James [?] and quite recurrently in 1D solid-state
physics. [?] On the other hand, the transfer matrices of the second kind were
used by Luttinger [?] and Borland, [?] who called them transformation ma-
trices. Lately, these matrices appeared more frequently and came to be called
also transfer matrices. A simple unitary transformation relate the transfer
matrices of the first and second kind. We will mainly be concerned with the
transfer matrices of the second kind, but in some cases, especially when the
wave functions can not be written in the propagating modes representation,
the transfer matrices of the first kind are very helpful.
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V(z)

f— :’3
a //\R/\ @
1 \_\} )

Z

Fig. 2.7. The incoming and outgoing spin independent wave vectors. Here we use
the simplified notation qSli for ¢F(z) and ¢ for ¢F(z,)

It is worth noticing that the transfer matrix method is not an alternative
method to solve differential equations. The transfer matrix plays a comple-
mentary role, it is useful to manage the continuity requirements, boundary
conditions and obtaining relevant physical conditions and physical quantities.
It will be seen, also, that the transfer matrix properties, properly used, en-
hance the power of some analytical calculations and, hence, of the numerical
evaluation procedures.

Since the explicit form of the transfer matrix depends on the specific sys-
tem at hand, we will present here just some general definitions. To give an
example of the transfer matrix definition relating functions at two points of
the z axis, we will use the wave functions shown in figure 2.7 at z; and z,,
but it must be clear that the transfer matrices relate wave vectors at any two
points of the z axis.

2.2.1 Definition of the transfer matrix M

While the scattering matrix relates incoming with outgoing wave vectors, the
transfer matrix relates wave vectors at two points of the z axis. Suppose we
have the wave functions <p;t at z; and z,, of figure 2.7. As in Eq. (2.38) we
can use them to write the N-dimensional, right and left moving wave vectors

aupi’(Zz) bipy (=)
ot (z) = azapﬁ.(zl) and ¢ (z) = b2<,0.2“(zl) (2.79)
anen(z) bnpy (1)

at z; and the right and left moving vectors

Cl@i (2r) dl@i(zr)
o )= | A2 and o= | B s
CN%O—}\_/(ZT) dN(PXZ(ZT)

at z,. With these vectors one can form the total wave vectors
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+ +
¢(z1) = (f}gg) and d(z) = (z_gzg) (2.81)

at z; and z,.. Once the Schréodinger equation has been solved and the continuity
requirements satisfied, it is possible to show that two vectors like these are
related to each other by a matrix, the transfer matriz. In this case by the
transfer matrix M(z,, z;) defined by

o) = Mol = (2] ) ota) (282

This type of relation can, certainly, be established for any two points of the
growing direction. For this reason, if z; and 29 are two points in the z axis of
the system, we will always try to obtain the transfer matrix M (z2,21) such
that

P(z2) = M (22, 21)¢(21) (2.83)

In the next chapters we will explicitly obtain transfer matrices for some
basic potential profiles. A transfer matrix M (23, z1) relating wave vectors at at
z1 and zo, behaves as a propagator of the physical information. In some way,
the transfer matrix M(z2,21) transforms the physics at z; into the physics
at zo. The transfer matrix M (z,, z;), defined here, like the scattering matrix
S(zr, z1) defined before, contains the whole information of the scattering pro-
cess in the potential region between z; and z,.. As will be shown in the next
section there is a close relation between the transfer and the scattering matrix.

2.2.2 The scattering amplitudes and the transfer matrix elements

Based on the scattering and the transfer matrix definitions, one can easily
find important and useful relations between the transfer matrix elements and
the scattering amplitudes. Since

() = ¢T (20) O (2r)
— ¢

?i(
¢ (z1) (z0)  #n(zr) =" (2r) (2.84)

I
oS
Ny
N

we can write Eq. (2.82) as

) (52 ()
7 = 2.85
(i) = (59) (G (259
From this relation and Eq. (2.43), that defines the scattering matrix, we easily
obtain

(a+ Br —Hgi(m) = (" = 6')p} (a2)
(3 + r)gi(a) = (1 = 6t )i (20, (2.56)
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Since the incoming amplitudes, ¢!(z;) and ¢.(z,), are arbitrarily and inde-
pendently fixed, they are also linearly independent functions. All coefficients
must vanish, i.e.

a+pfr—t=0,
r — Bt =0,
v+ dr =0,
16t =0. (2.87)
Hence
1 1
’r—_g’ya t_a_6577
1 1
/ /
= —_ = - . 2.
M=py, =1 (285)

These are very important relations. They show that one can immediately
obtain the scattering amplitudes when the transfer matrix is known, and vicev-
ersa. Let us now see what kind of requirements result on the transfer matrix
when flux conservation and time reversal invariance are imposed.

2.2.3 FC and TRI in the transfer matrix M

Suppose again that we have the spin independent scattering process shown
in Figure 2.7. Independent of the specific potential and the solutions in that
region, It is clear that the flux is conserved if the particle current density at
21, given by !

ih .
Ji= o [0 () V6" (1) — 0/ () V()] (2.89)
is equal to the particle density at z,., given by

Jo = o (6 () V6 () — 6 () V()] (2.90)

In the leads, with

kt00..0

o (kKON _[Iy O k0 | 0oko0. 0
sac=z (§0)= (" 0 ) (bR) mma w= |00 (201)

0 00 ..kn

the flux condition becomes

_¢T(Zl)EzKl¢*(zl> + QH(Zl)EzKl(b(Zl) = - ¢T(Zr)2zKr¢*(ZT)
+ ¢T(ZT‘)EZKT¢(ZT) (292)

!'T means transpose and T means the transpose conjugate
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a @r
= =3
m- * /\ @- *
A \‘\} S

Fig. 2.8. The incoming and outgoing wave vectors.

The two terms on the left are equal and the same happens on the right. Using
this and taking into account that X, K = K1/222K1/27 the flux condition can
be written as

o7 () K22 K) P97 (1) = o7 (5 KM D K267 (2,). (2.93)

This is an important intermediate result that makes evident the implications
that may have the normalization factor of the plane waves in the leads. If we
would have considered the wave functions

1 )
ikjz (2.94)

@j(z) = We )

the factors K'/2 will be canceled by the normalization constant and we will
have

¢ (20) 220" (21) = &7 (2) 226" (21). (2.95)

This point is particularly important when the kinetic energy on the left hand
side is different to that on the right, as is the case for biased systems. Using
the relation

D(2r) = M(zr, 21)0(21) (2.96)
on the right hand side of (2.95) we have
¢ (21) 220" (21) = o7 (1) MT Z.M* " (). (2.97)
Thus, the flux conservation requirement on the transfer matrix is
MY, M=2X.. (2.98)

It is worth noticing that we have consider the same masses m at the left and
right. In the application to semiconductor structures, where it is common to
assume the effective mass approximation, the masses could be different and
mass factors m}/m; must be taken into account, properly.
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Consider now the spin independent process of figure 2.8, which is the time
reversed of the process shown in figure 2.7. The scattering process is said to
be time reversal invariant if the transfer matrix M satisfying the relation

(570) = wenan (5729) (299)

fulfills also the relation

¢:(z,.) = M(2y,2) ¢:(zz) (2.100)
¢ (2) ¢ (21)

taking the complex conjugate of this equation we have

(%?;) =M (zr, 1) <£+EZ§) : (2.101)

(fﬂi%) - (I(])v Iév> (ﬁ%i;) =2, (iszD . (2102)

equation (2.101) can be written in the form

5, (?Ezg) = M* (2, 2) 5 (?EZ;) . (2.103)

Since

that transforms into

(f;é;g) = X, M* (2, 2) 5, (ifgig) : (2.104)

Hence the time reversal invariance property implies the condition
M=X MY, (2.105)

If the transfer matrix is written in terms of the matrix blocks «, 3, v and
d, this time reversal invariance condition takes the form

(75) = () (55) (50)
- (g 3) : (2.106)

Therefore, the transfer matrix of a TRI, spin independent, scattering process
has the structure

M= (BO‘ f) (2.107)
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Combining the FC and TRI conditions (2.98) and (2.105) we have

MTFM =F  with ]—':Esz:( (} I(f)V). (2.108)
—4IN

which define the symplectic group Sp(2N,C) with N(2N +1) free parameters.
In some cases like in the multichannel approach to disordered conductors,
other representations of the transfer matrix can be useful. We will refer to
this issue in the next sections, especially for the orthogonal and the symplectic
universality classes.

2.2.4 Other consequences of FC and TRI
Since ¢’ = 1/a* and ¢’ = tT, for TRI systems, it is clear that ¢t = 1/af. We
will show now that using the FC and TRI requirements one can derive, in

general, the relation ¢ = 1/af as well as that det M = 1.
The flux conservation requirement for TRI systems written in the form

T gT Iy 0 Iy 0
o) (5 ) (pe)=(5 %) e

implies the condition

ata = g7p* ofp—pgTa* _(In O
(ﬂTOzOLTﬂ* ,BT,B(XTO[*)_((I)V—IN)7 (2110)

which means that

afa - gTp* =1y
afp—pra* =0. (2.111)

The second of this equations leads to
1, 1
— =[/—. 2.112
T = (2.112)
If we now recall that
1
t=a-3—p%, (2.113)
e
and use the previous relation, we obtain
t=a— iﬁTﬁ* -1 (a'a — BT 3%) (2.114)
af af ' ’
Thus

t=—. (2.115)
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To show that det M = 1 we use the following identity

M- a B\ (a0 In a~ 1B
- 5* ot - ﬁ* o 0 IN—OL*_lﬂ*Otilﬁ

Since
det M = det (5‘ O?) det <Iév . a‘i‘_ig*a_l@
and
det (é l())) = det(AD) = det Adet D,
we have

det M = det(aa*) det(Iy — o* '3 a™14).
This equation, using (2.114) and (2.115), can also be written as
det M = det(a) det(a* — *a™'3) = det(a) det(t*).

Thus

1
det M = det(a) det (O(T) =

2.2.5 The composition rule of the M matrices

)

(2.116)

(2.117)

(2.118)

(2.119)

(2.120)

(2.121)

At variance of the involved composition rules for the S-matrices, the transfer
matrix composition rules are extremely simple. If we have the successive po-
tential regions of figure 2.9, which correspond to figure 2.5, in each region we

have the transfer matrix relations

V(z)
ar @t N
—_— —— —_—
-— B — i ——
a @ 3
t t t
z Z, Zy

Fig. 2.9. The right and left moving wave vectors in two successive potential regions.
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(0) = (32 () = anemon (1
CE) - (e -

( ’ ) — My (s, 2) (j

while the transfer matrix M for the successive potential regions is

(7)) () - weamn (2)) oo

It is clear from these relations that

> (2.122)

z3
<3

z2
Z2

> (2.123)

M(Zg,Z1) = M2(2372’2)M1(22721) (2.125)

This simple composition rule, known also as the multiplicative property of
transfer matrices, contrasts with the complexity of the corresponding rule for
the S matrices. Once the transfer matrix of the composed system is obtained
one can easily obtain the reflection and transmission amplitudes. Let us verify
this. To simplify the expressions let us suppose that the interactions in each
of the potential regions is TRI. In this case

- (o2 B ar i\ _ (a1 + 0207 a2f + faaq (2.126)
B5 cuox B an* Bion + o387 B3f +azar )T
We have seen that
1 1 1 . 1
ﬂ:,r/? , O‘*:P:ﬁ , 1] :_yr (2.127)
The transmission amplitude ¢ of the two successive processes is then

1 1
t= - (2.128)

(agay + 52ﬁf)T aiag + ﬂfﬂg

If we use the previous relations and that the reflection amplitudes for TRI
systems are symmetric, we have

1
t= = = (2.129)
11 1 T 7(1
b= (&) = (3)
Hence
t=t L (2.130)
a 2[]\/'—7"/17'2 b '

as in (2.61). To study the conduction and stationary properties of more com-
plicated structures, we will generally deal with transfer matrices. The physical
expressions will be written in terms of the transfer matrix elements.
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2.2.6 The M matrix for the 1D square barrier potential

In the next chapters and throughout the book we will systematically use a
procedure that makes easier to obtain transfer matrices for systems with more
than two discontinuity points. To obtain the square barrier transfer matrix
M, we can use the continuity conditions in (2.67) and (2.69) derived before.
If we write those equations in the form

Bageikb - Gbgeiikb = Fa1 - Abl

Daze™® — Jbge ™** = Ha, — Cb;. (2.131)
with
A=H*=i(k* + ¢*)sinhgb , B = J = 2kq,
C = F* = 2kqcosh gb + i(q* — k*)sinh gb , D=G=0, (2.132)

it is possible to express the wave functions at z = b in terms of the wave
functions at z = 0 as follows

ikb 1 (F H
ase _ 1 a1

Thus, the square barrier transfer matrix is

hab+i®=D sinhgh i 92 ginn gb
Mb—<cos gb+i 55— sinhq "5, sinhg _<gfg gi) (2.134)
b Y

i (kz;?z) sinh gb cosh gb—i (kr;;gz) sinh gb

and since t, = 1/ ozz, we obtain again the square barrier transmission ampli-
tude

2kq

ty = .
b 2kq cosh gb—i(q? — k2) sinh ¢b

(2.135)

2.2.7 Definition of the transfer matrix W

Let us now introduce the transfer matrix W of the first kind. As will be seen
here, the use of this matrix is much more convenient for an important class of
problems, especially those involving external fields. Consider again the spin
independent scattering process of figure 2.7, with solutions at z; and at =z,
given by

pi(z) = ajo] (z1) + bje; (21) (2.136)

and



2.2 The transfer matrix and some basic properties 31

pj(zr) = ;o) (2r) + djpy (21), (2.137)

respectively. With these functions and their derivatives ¢’(z) and ¢ (2;), we
can form the vectors

©1(21) ¢1(2r)

| enta et
D(z) = 2 (21) and b(z,) = 2 (20) (2.138)

Ph(a1) ()

These kind of vectors can be defined at any two points z; and z3. The matrix
W (%, z1) that satisfies the relation

D(z,) = W(zr, 2)P(21) = <z ’;) D(z), (2.139)

is the transfer matrix of the first kind that connects wave functions and
their derivatives at z; and at z,.. In general, one can define a transfer ma-
trix W (ze, 21), for any two points z; and z3 of the z axis of the system, such
that

@(22) = W(Zz, Zl)ﬁp(zl). (2.140)

2.2.8 FC and TRI and the transfer matrix W

Using the wave vectors ¢t (z;) and ¢*(z,) defined before, in the simplified
notation <]§li and ¢F, we can write the vectors &(z) at z and z, as

(o o _ ¢r+¢r>
@(@)—( l+/+¢l/> and  &(z.)= <¢;r/ +¢;/ , (2.141)

and the current densities J(z) as
1
Ji= 2% (& +o7)TV (8 +¢7)* — (& + 7)) V(e +o7)]

_ i {@T(zl) (_(}N I(J)V>q'>*(zl)} z, (2.142)

2m
and
Jr = % (67 +0,) V(@0 +¢,)" = (0F +0,) IV (6] +¢,)]
- A
— 2Lm [@T(Zr) ((;N I(z)v) gp*(zr)} 2. (2.143)

Therefore, the flux conservation requirement implies the condition
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wis,w=25,. (2.144)

Being Y, the Pauli matrix o, of dimension 2N x 2N. We shall now see what
condition results for W from time reversal invariance. Consider again that the
same matrix W (z,, z;) that relates @(z;) with ®(z;) in figure 2.7, relates also
the vectors

+ % + N
@*@”(fiiﬁﬁ—') and @*(zr)<¢¢;’,iz’;,> . (2.145)

in figure 2.8. It is clear then that for TRI systems the transfer matrix W is
real, i.e.

W =W (2.146)

The transfer matrices satisfying (2.144) and (2.146) belong to the non-compact
real symplectic Lie group sp(2N, R) with N(2N + 1) free parameters.

2.2.9 The relations of W with M, and the scattering amplitudes

Based on the transfer matrix definitions
_ : _(¢7(2)
P(22) = M(22,21)P(21)  with  &(2) ) (2.147)

and

D(z2) = W(z2,21)P(21) with  &(2)= (f:g; T_Z_/(?Q (2.148)

we can establish the relation between these matrices. Let us assume that the
points z; and zo of the last equation are points in the left and right hand
side leads, moreover, it is might be important to consider the wave functions
in the leads with the normalization factor 1/y/m/hk;, for which the currents
become momentum independent. In that case, using

B(z) = (ﬁ;ﬁ f;f;) (?8) (2.149)

we can write equation (2.150) in the form

KoY?2 go1/2 ¢t (22)\ _ KoU2 12 6+ (21)
(il%ﬂ —i2K21/2> (¢(32))—W(22721) 2.11{11/2 —ilKll/2 (¢(Z1)) (2.150)

Since

—1/2 —1/2\ ! 12 .o
Ky VPRGN L i (2.151)
iK)? —iK? 2 \KY? Kyt )
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it is clear that
1 (KY? k! K7Y? g2
M(zg,21)==["2 2| Wiz, 2 L L 2.152
( 2 1) 2 <K21/2 iK;l ( 2 1) Z.Kll/z —iK11/2 ( )

Given this relation and assuming that
W(zg,21) = (O F (2.153)
) v X )
one can straightforwardly obtain the scattering amplitudes
2

t= — (2.154)
Ky [0+ Ky 'Ky + i(pKy — Ky ') Ky /2

and

r=—tKy? [0 — Ky 'YKy +i(uk, + Ky 'v)] K V2 (2.155)

2.2.10 The W matrix for the 1D square barrier potential

To obtain the transfer matrix W, for the square barrier potential we use the

continuity conditions
9011(0+)> (SOI(O_)>
= B 2.156
(e69) = (o) (2:156)

at the left side of the barrier, where z = 0, and

8011(5+)) <<P111(b_))

= _ 2.157
(2n6)) = (26 (2157
at z = b on the right hand side of the barrier. To determine the transfer matrix

W (b,0) connecting the wave vectors and their derivatives at the left and right
of the square barrier, it is convenient to rewrite the previous equations as

follows:
(o ze) ()=o) e

@'y (b) ¥'5 () ba e (b) e (b)
To simplify the notation we have dropped the signs + and — for the coordi-

nates. If we multiply equation (2.158) by the inverse of the matrix on the left,
and substitute the coefficients vector in the last equation, we have

and
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em(®) _ (@5 (0) e (0)) (€3(0) ¢\ (i(0)
(o) = (o &) (Fosn) (50) ew
This means that the transfer matrix W}, = W(b,0) is

_ (€50 20 (950) 9300\
" (¢’§(b) w’g(b)> (@’3(0) @’2(0)> (2.161)

Taking into account the explicit functions ¢3 (0) and @ (b) obtained in (2.64),

we have
et e~ L (g 1 -t
W= (Qqu qeqb> % (q _1> (2.162)
which becomes
coshgb L sinhgb Oy 115
= q —
W <q sinh ¢b cosh gb Vb Xb (2.163)

It is easy to establish the relation with the transfer matrix M. Since

Pr0)) _ (kL% KRN (01(0)
(@i(O)) B (ik1/2 —ik'2 ) \ o7 (0) (2.164)
and
o)\ _ (kY2 kY2 [ of (b)
it is clear that
1 /K2 _jp—1/2 p-1/2 p—1/2
My, = 2 <k;1/2 ik—1/2 > Wi <ik;1/2 —ik1/2> (2.166)

This relation is a particular case of the general relation obtained in the last
section. After multiplying, we obtain the transfer matrix M, derived before,
for the square barrier potential.

In this chapter we have introduced basic definitions of physical and mathe-
matical quantities that will be used throughout this book. In the next chapter
we will discuss briefly the fundamental physical quantities, for transport and
optoelectronic processes, in the scattering approach language.

24H. M. James, Phys. Rev. 76, 1602 1949!. 25P. Erdos and R. C. Herndon,
Adv. Phys. 31, 63 1982!. 26P. A. Mello, P. Pereyra, and N. Kumar, Ann. Phys.
N.Y.! 181, 290 1988!; E. Merzbacher, Quantum Mechanics Wiley, New York,
1970!. 27 J. M. Luttinger, Philips Res. Rep. 6, 303 1951!. 28R. E. Borland,
Proc. R. Soc. London, Ser. A 84, 926 1961!.
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