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Theory of finite periodic systems: General expressions and various simple and illustrative example
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A comprehensive presentation of an approach to finite periodic systems is given. The general expressions
obtained here allow simple and precise calculations of various physical quantities characteristic of crystalline
systems. Transmission amplitudes throughn-cell multichannelquantum systems are rigorously derived. Gen-
eral expressions for several physical quantities are entirely expressed in terms of single-cell amplitudes and a
new class of polynomialspN,n . Besides the general expressions, we study some superlattice properties such as
the band structure and its relation to the phase coherence phenomena, the level density and the Kronig-Penney
model as its continous espectrum limit. Band structure tailoring, optical multilayer systems, resonant energies
and functions, and channel-mixing effects in multichannel transport processes are also analyzed in the light of
this approach.
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I. INTRODUCTION

The solid-state theory that has evolved into the pres
condensed matter physics carries a burden of prequantic
oretical tools to describe periodic systems. In the curr
theory, the reciprocal space and its corresponding meth
~appropriate and natural to deal with Miller indices a
structural analysis of crystalline materials! were, so to say,
customized for a quantum description of periodic syste
Simultaneously, the translational invariance and the ensu
Bloch’s theorem,1 rigorously valid only forinfinite periodic
systems, become the natural and obvious starting poin
deal with real periodic systems which, although mac
scopic, arefinite. Despite the important results obtained a
the great amount of interesting phenomena that have b
explained so far,2,3 the theoretical analysis in the reciproc
space provides a rather involved and sometime obscure
scription of the physics of the crystalline systems. An alt
native approach, which is much simpler and natural
studying finite periodic systems, without any reference
Bloch’s theorem or reciprocal spaces, was recen
introduced.4 Further developments and details of this theo
will be presented here. In this approach, which relies
simple algebraic methods and was envisioned to study
tems with an arbitrary number of cells, an arbitrary numb
of propagating modes and an arbitrary shape of single-c
potential, exact, and general expressions can be determ
for quantities which are either impossible to calculate with
the present theory or may require experimental input.

This theory follows a procedure which is in some sen
similar to the one used in solving simple quantum mecha
cal problems such as the square well potential, the harm
oscillator, etc. In these cases the energy eigenvalues an
eigenfunctions are directly obtained without any reference
reciprocal spaces or approximate methods. As will be see
this paper and forthcoming publications, an appropriate
of the transfer matrix properties allows one to study fin
periodic systems and to rigorously deduce analytical
general expressions for a number of physical quantities c
0163-1829/2002/65~20!/205120~26!/$20.00 65 2051
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acterizing open and bounded systems. In the present
proach and in the traditional solid-state physics theory,
way in which the periodicity and finiteness of the syste
are incorporated in the theory is handled differently and
extent and limitations of the theoretical predictions dep
dent on how this problem is confronted. In the tradition
approach,1–11 the translational invariance is assumed fro
the very beginning and leads to the widely accepted Blo
functionseikB•rum,kB

(r ), where the periodic partum,kB
(r ) re-

mains practically unknown or approximately determined
rather involved numerical calculations. This function is tak
as a rigorous solution of the Schro¨dinger equation, which is
not true unless the size of the system is taken to be infin
This underlying assumption implies that the current the
stays in the continuous spectrum limit and draws one i
very natural way to work and develop a theory in the rec
rocal space. A number of well-established but approxim
methods have been developed to basically evaluate dis
sion relations at different symmetry points of the Brillou
zone. In the transfer-matrix approach on the other hand,~lo-
cal! periodicity and finiteness, inherent to the theory, a
fully introduced without any drawback, and a theory of fini
periodic systems is neatly built up on them. Universal e
pressions for globaln-cell physical quantities, valid for any
realization of the potential function, are rigorously and d
rectly obtained in our theory. We believe that in some ca
the transfer matrix approach will substitute with advanta
the current models, while in other cases, but not in gene
an appropriate combination will work better.

In the standard approaches to multilayer systems both
transverse translational invariance and the one-dimensi
~1D! one-channel~or propagating mode! approximations are
regularly invoked. These convenient assumptions stand
whereas channel mixings are negligible. Otherwise, it is
possible to sustain the 1D one-channel assumption whe
real multimode propagation process is present. A the
where a multichannel approach is possible is then requi
In general, even at low energies and for narrow system
number of propagating modes~open physical channels!
©2002 The American Physical Society20-1
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might be present. In the scattering approach to electro
transport processes, each of the transverse nonevane
states in the leads define an open channel. For a 2D syste
say, an electron gas in a GaAs layer with transverse widtw
and energyE—the number of~electron! propagating modes
is of the order of 2wA2m* E/p\'0.8wAE. For w.8 nm
and E*0.1 eV this number isN'2. We shall in genera
conceive the physical channels in a wider sense. Hence,
and heavy holes or any other propagating mode can be
sidered as a concrete realization of a channel.

In the theory of finite periodic systems~TFPS’s! discussed
here and in the forthcoming parts, the finiteness property
real systems and the possibility of multichannel proces
are essential to the theory and they are explicitly built in.
this theory we use the more suitable transfer-matrix meth
which, although scarcely used in solving quantum mecha
cal problems, provides an extremely powerful techniq
mathematically simple, and, from the point of view of th
physical results, fairly appealing and significant.

The possibility of easy derivations of general expressi
to describe the physics of the wholen-cell system is an im-
portant advantage of this approach. Some highly remark
characteristics of these expressions are their simplicity
compactness. The fundamental properties of the quantum
scription such as thetunneling effectand phase coherence
phenomenaare evident in their functional structure. Just
illustrate what we mean here, let us refer to then-cell
N-channel transmission amplitudetN,n obtained in Eq.~27!,
where for simplicity the subindexN has been dropped. Thi
global quantity is a simple function of the one-cell transm
sion t (5tN,1) amplitude and certain well-defined polynom
als pn (5pN,n). In that expression,t carries information on
the tunneling process whilepn on the phase coherence ph
nomena. In the 1D~one channel! case,pn reduces to the
well-known Chebyshev polynomial of the second kindUn .

In the theory of finite periodic systems, the polynomia
pN,n comprise the whole information of thecomplicated
phase interference processes, originating in the multiple re-
flections along the ‘‘periodic’’ system, and of the system
sizeL (5nlc in the growing direction! reflected in the order
of the polynomial. The multichannel polynomialspN,n are
interesting quantities not only from the point of view of th
physics but also from that of the mathematics. Physical pr
erties that are strongly determined by quantum cohere
and tunneling effects, such as the resonant transmission
havior and the energy band structure, are thoroughly se
out by the single-cell transfer matrix and the number of ce
n. It is worth mentioning that all the results in this theory a
compatible and reduce, when taking appropriate limits,
well-known physical properties and expressions.12–19 In this
theory, even the popular and illustrative Kronig-Penney~KP!
model can be derived in a more natural and simple way.

In this paper we shall refer mainly to multichannel tim
reversal-invariant and -noninvariant systems with and w
out spin-dependent interactions, i.e., to systems of the
called orthogonal, symplectic, and unitary universal
classes, named by the kind of matrix that diagonalizes
HamiltonianH, respectively.20 Since the most general or les
restrictive class of systems is those of the unitary universa
20512
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class~with time reversal symmetry broken and, dependin
or not, on the spin!, most of the expressions derived in th
part will refer to this kind of system. However, in some cas
we will be more specific with the universality classes. F
the sake of simplicity we will discuss examples of the o
thogonal class, i.e., spin-independent and time-rever
invariant systems.

The TFPS’s will be discussed in three parts. In the fi
part, we will introduce the transfer-matrix method, establ
general properties using the scattering amplitudes, and
duce general expressions for the evaluation of a numbe
physical quantities in open systems. In the second part
will refer to bounded and quasibounded systems and the
traband energy eigenvalues and eigenfunctions. In the t
part we will apply the results obtained to the calculation
the band structure for real systems, such as GaAs and A
taking into account thee-e ande-nucleus Coulomb interac
tions, the repulsive angular potential, and the spin-orbit
teraction.

In Sec. II, of this first part, we shall present an overvie
of the transfer-matrix definition and recall the well-know
relations with the scattering amplitudes. In Sec. II B, we d
rive a general three-term recurrence relation, which is
important piece of the theory, whose solutions are the ma
polynomial pN,n . In Sec. III, new and general expressio
for the scattering amplitudes and the associatedn-cell trans-
port quantities are derived. Closed and compact express
for an easy evaluation of the resonant energies and reso
functions of open systems are also presented. Since all t
quantities are shown to depend on the polynomialspN,n , we
present in Sec. IV, for completeness and self-consistency
outline of the solution of the three-term recurrence relat
obtained in Ref. 21. In Sec. V, 1D one channel and 3D m
tichannel examples are discussed.

To illustrate the application of the theory to one-chann
periodic systems, we shall consider the typical square-
d-barrier potential chains. Various well-known properti
such as the band structure, resonant tunneling probabili
transmission coefficients, resonant energies, and wave f
tions will be calculated. Level densities, including the inte
esting coherence-induced localization effect in open syste
will also be disscused. The interesting and well-known ba
structure ‘‘tailoring’’ and the familiar energy levels and su
bands in the gap regions are also nicely accounted for
adding ‘‘impurities’’ or producing topological defects to th
finite periodic systems. Concerning the multichannel s
tems, and to exhibit the advantages of this formalism wh
dealing with channel mixings, we will finally include som
examples of two and three propagating modes through a
nating thick GaAs layers and thin films ofd-repulsive or
d-attractive centers, with interesting resonance effects aris
from phase coherence, channels coupling, or coupling
tween an open and an evanescent mode.

Since the principal results of this paper are equally va
for electromagnetic systems, evaluation of optical transm
sion properties through optical multilayer heterostructure
also possible. The superluminal tunneling time through o
cal superlattices22 or the nonlinear multilayer optical array
0-2
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THEORY OF FINITE PERIODIC SYSTEMS: GENERAL . . . PHYSICAL REVIEW B65 205120
with alternating ‘‘dielectric constants’’23 in the ‘‘single-layer
approximation’’ have been also successfully attacked. For
last case we shall calculate the transmission coefficients
the optical band structure.

II. TRANSFER-MATRIX APPROACH
FOR MULTICHANNEL FINITE PERIODIC SYSTEMS

A. Properties, definitions, and the scattering amplitudes

Transfer matrices and their properties were used in
1950s as natural quantities to describe electronic spectra
transport processes through ordered and disordered li
chains.24,25 More recently, multichannel-transfer-matrix a
proaches became familiar in the scattering theory of quan
wires.26 Basically two types of transfer matrices are know
the transfer matrix~which we shall call of the first kind!,
which connectswave functions and their derivatives at tw
points or planes of the scattering region, and the transfer
matrix ~of the second kind!, which relates thestate vectors at
those points or planes. Transfer matrices of the first kind
were used by James24 and quite recurrently in 1D solid-stat
physics.25 On the other hand, the matrices of the second k
were used by Luttinger27 and Borland,28 who denoted them
‘‘transformation matrices.’’ Lately, matrices of this type ha
appeared somehow more frequently and came to be
called ‘‘transfer matrices.’’ Both types of transfer matric
can, of course, be related to each other by a simple trans
mation. In this paper we will be concerned with trans
matrices of the second kind relating state vectors.

If we were dealing with an electronic transport proce
through a 3D ‘‘periodic’’ system~of length l 5zR2zL and
transverse cross sectionwxwy) connected to perfect leads~or
waveguides! of equal cross section~see Fig. 1!, the assumed
noninteracting charge carriers would feel a potential funct
containing at least a confining hard wall potentialVC(x,y)
and a periodic potentialVP(x,y,z), periodic at least as a
function of one coordinate—say, the coordinatez. Solving
the partial differential equation

FIG. 1. Particles moving through a 3D superlattice of late
dimensionswx , wy and cell lengthl c feel a lateral confining hard
wall potentialVC(x,y) and a periodic potentialVP , at least as a
function of the growing coordinatez.
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2m S ]2

]x2
1

]2

]y2D fnxny
1VC~x,y!fnxny

5Enxny
fnxny

,

~1!

a set of functionsfnxny
(x,y) and physical channels can b

defined in the leads. For a given Fermi energyE, a number of
open channels or propagating modes with threshold ener

Ei5
\2p2

2m S nx
2

wx
2

1
ny

2

wy
2D <E ~2!

can be identified. Notice that all the possible physical sta
can be labeled by a channel indexi 5$nx ,ny%51,2, . . . ,sN,
wheres is the number of spin projections~taken into account
only when the interaction depends on the spin! andN is of
the order of (kFw)D21, with D the system’s dimensionality
andkF the Fermi wave vector. From here on, the number
propagating modes is taken in general asN5sN. We can use
the set of functions$f i(x,y)% to express the total wave func
tion as

C~x,y,z!5(
i

N

f i~x,y!w i~z!. ~3!

Substituting in the Schro¨dinger equation, we obtain the fol
lowing system of coupled equations:29

d2

dz2
w i~z!2~k21kTi

2 !w i~z!5(
j

N

Ki j w j~z!, i 51,2, . . . ,N,

wherek5A2m(VP2E)/\, kTi
2 52mEi /\2, and the channe

coupling parameter

Ki j 5
2m

\2 E f i* ~x,y!VP~x,y,z!f j~x,y!dx dy. ~4!

Although the contribution of the so-called ‘‘closed channe
~evanescent modes! can, in principle, be taken into accoun
we shall in general disregard their contribution.

To determine the transmission amplitudes fromzL to zR
5zL1nlc , wherel c is the length of a single cell, the stan
dard procedure would require one to solve the coupled eq
tions and match the solutions all the way fromzL to zR .
Here, with a suitable method, we only need to solve
single-cell problem to describe most of the superlatt
physical properties.

Let wW is(z) and wQ is(z) be thei th-channel~with spin s)
wave functions traveling to the right and left, respective
The total wave functions in the left- and right-hand sides
the scattering region~see Fig. 2! can be written as

w~z1!5(
i 51

N

(
s51

s

@aiswW is~z1!1biswQ is~z1!#

5~a,b!S wW ~z1!

wQ ~z1!
D , ~5!

l

0-3
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w~z2!5(
i 51

N

(
s51

s

@ciswW is~z2!1diswQ is~z2!#

5~c,d!S wW ~z2!

wQ ~z2!
D , ~6!

where a,b,c, and d are N-dimensional coefficients. Thes
functions, in the state vector representation, are related
each other by a transfer matrix of the second kind defined

S cwW ~z2!

dwQ ~z2!
D 5M ~z2 ,z1!S awW ~z1!

bwQ ~z1!
D . ~7!

For our purposes it is useful to express the transfer matri
block notation as

M ~z2 ,z1!5S a b

g d D , ~8!

wherea, b, g, and d are sN3sN or just N3N complex
submatrices. In general, there are some constrictions betw
the submatricesa, b,g, andd, which of course depend o
the physical properties and symmetries present in the
tem’s Hamiltonian. As mentioned above, the physical s
tems are especially distinguished by the presence or no
time-reversal and spin-rotation symmetries. In each case
number of free parameters and the characteristics of
transfer matrix are determined by the symmetries.20,26

While time reversal invariance and spin-dependent in
actions~SDI’s! may or may not be present, flux conservati
~FC! must always hold and the transfer matrices should
fill the pseudounitarity condition~see Appendix B!

FIG. 2. Left- and right-propagating wave functions at two poin
z1 andz2 of a potential region.
e
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†5Sz ,

with Sz5S I N 0

0 2I N
D , ~9!

whereI N is theN3N identity matrix. In the absence of tim
reversal invariance, the Hamiltonians for both sp
dependent and spin-independent interactions can be di
nalized by a unitary transformation; hence the system
longs to theunitary universality class. In the presence of
time-reversal invariance~TRI!, we distinguish the spin-
dependent case from the spin-independent one. For s
independent systems, of the so-calledorthogonal universal-
ity class, time-reversal invariance implies thatd5a* and
g5b* , while for spin-dependent systems, of thesymplectic
universality class, TRI implies other requirements. For spin
1/2 particles, the transfer matrices have the structure20

Ms5S a b

kTb* k kTa* kD ,

with k5S 0 I N
2I N 0 D . ~10!

The specific functional form of the transfer-matrix el
ments depends on the particular potential functions. For
sake of illustration, let us consider here a periodic system
square barriers of heightV0 and widthb0 separated by val-
leys of widtha0, as shown in Fig. 3. The single-cell transf
matrix, relating wave vectors at, say,z1 andz2, is the well-
known matrix~see Appendix A and Ref. 30!

FIG. 3. One-dimensional finite periodic system of square bar
of heightV0 and widthb0, separated by valleys of widtha0.
Msb5S eika0cosh~kb0!2 i
~k22k2!

2kk
sinh~kb0! 2 i

~k21k2!

2kk
sinh~kb0!

1 i
~k21k2!

2kk
sinh~kb0! e2 ika0cosh~kb0!1 i

~k22k2!

2kk
sinh~kb0!

D , ~11!
r
, it
-

y

with k5A2mE/\ and k5A2m(V02E)/\. This system is
time-reversal invariant and belongs to the orthogonal univ
sal class. Henced5a* andg5b* . It is easy to verify that
this matrix also fulfills the FC requirement.
r-
Although the explicit calculation of the transfer matrix fo

an arbitrary potential region may not be a simple task
is still possible to establish~based on very general trans
fer-matrix properties! many interesting results without an
0-4
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THEORY OF FINITE PERIODIC SYSTEMS: GENERAL . . . PHYSICAL REVIEW B65 205120
reference to their explicit functional form.
At this point we shall introduce a brief digression to ref

to one of the most important and relevant physical conce
of the crystalline systems: the band structure, from a trans
matrix point of view. It is well known that in order to dete
mine the energy regions of extended wave functions one
use Kramer’s condition.30 In the 1D one propagating mod
approximation this condition is written asuTr M0u<2. Simi-
lar relations, appropriately modified, work well for system
with a larger number of propagating modes. For the fami
1D Kronig-Penney model shown in Fig. 3, i.e., for the s
quence of square-barrier potentials mentioned before,
single-cell transfer-matrix trace is

Tr Msb52S cos~ka0!cosh~kb0!

1
~k22k2!

2kk
sin~ka0!sinh~kb0! D . ~12!

The right-hand-side function is frequently quoted in the
erature as equal to coskBllc , the cosine of the Bloch phas
kBll c . In Figs. 4~a! and 4~b!, Tr Msb/2 is plotted together
with the transmission coefficients, referred to below. It
evident from these figures that the Kramer conditi
uTr M0u<2 determines the band structure. In theories
signed for infinite periodic systems, the allowed ene
bands are continuous regions of energy levels. Howe
from calculations of transmission coefficients for finite pe
odic systems the bands contain a finite number of ene
levels and the band structure manifests itself when the n
ber of cellsn is of the order of 5.

Sometimes it may be convenient, but it is not essential
this theory, to express the transfer matrices in the Ba
mann’s representation, briefly mentioned in Appendix B a

FIG. 4. In these figures the trace TrMsb/2 is plotted together
with the transmission coefficientsutnu2 for the periodic system in
Fig. 3, with V050.23 eV, b0510 nm, a055 nm, andn53,7 in
~a! and ~b!, respectively. In~a! we also have the single-cell trans
mission coefficientutu2. It is evident from these figures that th
Kramer conditionuTr M0u<2 determines the allowed and forbidde
energy regions.
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extensively studied in Ref. 20. In this representation and
1D systems of the orthogonal universality class, the trans
matrix trace reduces to

Tr M052 cosf coshx52 Rea, ~13!

with f andx being well-defined functions of the energy an
the specific potential parameters. In Fig. 5 we plot the fu
tions f and x, together with the transfer-matrix trac
Tr M0/2. The energy bands are indicated in the energy a
with bold lines. The phasef is a monotonous increasin
function of the energy, with an allowed energy band for ea
interval of lengthp. The parameterx, on the other hand
decreases monotonically. These two parameters define
only the appearance of resonant states and bands but als
building up of the gaps. Note that we can label the ban
with an index defined bym511(f2f modp)/p. It is im-
portant to make clear that, even though the band structu
a consequence of and will emerge once the phase coher
and the periodicity have been combined, the single-c
transfer matrix already contains information on this fund
mental property.

The Bloch’s phaseuBl5kBll c and the Bargmann param
eters are related by

cosuBl5cosfmcoshx, ~14!

with fm5f modp. A simple analysis of this equation an
the energy dependence offm and x ~see Fig. 5! neatly ex-
plains the reappearance of bands and gaps with var
width. It also shows that the Bloch phaseuBl comprises the
behavior of the real compact and noncompact parametef
and x, respectively. As these parameters vary, the Blo
phase passes from a real value~allowed band! to an imagi-
nary value~forbidden band!.

To describe tunneling and transport properties in terms
transmission amplitudes, it is important to recall the relat
between the transfer matrixM and the scatteringS matrix.

FIG. 5. The Bargmann parametersf and x and the transfer-
matrix trace TrM0/2 as functions of the energy for the period
system in Fig. 3. The energy bands are emphasized in the en
axis. The phasef is a monotonously increasing function of th
energy, with an allowed energy band for each interval of lengthp.
The parameterx, on the other hand, decreases monotonously. Th
two parameters define not only the appearance of resonant s
and bands but also the building up of gaps.
0-5
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PEDRO PEREYRA AND EDITH CASTILLO PHYSICAL REVIEW B65 205120
For scattering processes like the one sketched in Fig
the coefficientsr, t, r 8, and t8 are the reflection and trans
mission amplitudes corresponding to incident particles on
left- and right-hand sides, respectively. It is easy to ver
~see, for example, Appendix C!, that the transfer matrix o
the unitary universality class can be written as

Mu5S a b

g d D 5S ~ t†!21 r 8~ t8!21

2~ t8!21r ~ t8!21 D . ~15!

When time-reversal symmetry is conserved, one has to
tinguish spin-dependent from spin-independent systems
mentioned before. The TRI requirement for spin-independ
systems impliest85tT while for spin-dependent and TR
systemst85kTtTk. Here the superscriptT stands for the
transpose. These global relations~valid independently of the
size of the system, number of cells, and the potential p
files! are part of the cornerstone of the transfer-mat
method and they provide the possibility of establishing
bridge between the mathematically well-defined objects:
transfer matrices and the scattering amplitudes.

Another important attribute of the transfer matrices th
makes them appropriate quantities to describe system
finite but, in principle, arbitrary length is the multiplicativ
property

M ~z3 ,z1!5M ~z3 ,z2!M ~z2 ,z1!, ~16!

whereM (zj ,zi) is the transfer matrix relating state vectors
positionszi and zj . This property and the possibility of re
lating the matrix with the scattering amplitudes have be
broadly used; they constitute the principal ingredients of
transfer-matrix approach to the quantum description of fin
periodic systems.

It is well known that, in general, the scattering and t
transfer matrices contain the whole information of the sc
tering processes. Hence it is not surprising that based
these quantities one could build a theory to describe
physics of systems whose geometry permits the definition
the corresponding transfer matrix. To exploit this method
is essential to improve the ability toanalytically calculate
consequences and new results associated with the tra
matrix and, hence, with the scattering amplitudes at
point of the system. This is, in principle, possible and it is t
goal of the next section. We shall establish a general met
and deduce general formulas that can be applied directl
determine physical quantities for specific finite period
systems.

FIG. 6. The inccoming and outgoing amplitudes and the sca
ing amplitudes for particles coming in from the left- and right-ha
sides.
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B. n-cell transfer matrix and some basic relations

The multiplicative property of transfer matrices mak
them suitable quantities to describe systems whose le
grows. If we put together two identical cells of lengthL/n
and with a transfer matrixM each, the resulting system o
length 2L/n has the transfer matrixM25MM5M2. The
physical information of the enlarged system is fully co
tained in the resulting transfer matrixM2, while the func-
tional relation ofM2 with the physical quantities~scattering
amplitudes! remains unchanged. Applying the multiplicativ
property over and over, we can express the global (n-cell!
transfer matrix as

Mn5Mn5S a b

g d D n

[S an bn

gn dn
D , ~17!

which is related to the corresponding scattering amplitu
by

S an bn

gn dn
D 5S ~ tN,n

† !21 r N,n8 ~ tN,n8 !21

2~ tN,n8 !21r N,n ~ tN,n8 !21 D . ~18!

A quite significant step in the transfer-matrix method is, p
cisely, the possibility of analytically determining the matric
an , bn , etc., and hence, from Eq.~18!, to deduce analytica
expressions for the globaln-cell N-channel physical quanti
ties. The subindexN will be usually absent in the TM blocks
and the one channel quantities, just for simplicity. For n
merical evaluations it may be convenient to diagonalizeM as
ULU† and to write then-cell transfer matrix asULnU†.
However, by doing this one loses all the power of t
transfer-matrix method for analytical calculations and spo
the possibility of deriving new expressions for fundamen
physical quantities.

Let us now consider some transfer-matrix properties a
derive fundamental relations in this approach. In the follo
ing we will be concerned mainly with the unitary universa
ity class with transfer matrixMu, but for an easy notation the
subindexu will be omitted.

Since

Mn5MMn21 , ~19!

it is clear that

an5aan211bgn21 ~20!

and similar ones forbn , gn , anddn , with a05d05I sN and
b05g050. Starting from these relations one can easily o
tain thematrix recurrence relation (MRR)

bn5~a1bdb21!bn211~bg2bdb21a!bn22 , ~21!

and a similar ones foran , gn , anddn . All these relations
are three-term recurrence relations with matrix coefficie
of dimensionN3N. If we define the matrix functions

pN,m21
(1) 5b21bm , ~22!

Eq. ~21! becomes the noncommutative polynomial rec
rence relation (NCPRR)

r-
0-6
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pN,n
( i ) 1z i pN,n21

( i ) 1h i pn22
N,(i )50

for n>1 and i 51,2. ~23!

Here z152(b21ab1d), h15(db21ab2gb), z2
52(g21dg1a), and h25(ag21dg2bg) are the matrix
coefficients. It is easy to see that the initial conditions
pN,21

( i ) 50 andpN,0
( i ) 5I N . Notice that in the one-channel cas

z andh becomea1d5Tr M andda2gb5detM , respec-
tively. Thus, forone-dimensionalsystems the NCPRR is th
Chebyshev polynomial recurrence relation and, at the s
time, becomes the characteristic polynomial of the 232
transfer matrix. In the multichannel case, Eq.~23! contains
noncommutative factors.

By solving the matrix recurrence relation it is possible
extend the transport analysis to a multichannel descript
As was shown in Ref. 21 and will be outlined in Sec. IV a
Appendix E, the matrix recurrence relations can be sol
almost straightforwardly. Before continuing with this outlin
let us assume that the polynomialspN,m are known and
hence proceed to derive the superlattice scattering am
tudes and relevant physical quantities.

From the mathematical point of view, the generalized
currence relations have some special implications which
beyond the purpose of this paper and will be discussed e
where in connection with the matrix representation of gen
alized orthogonal polynomials and noncommutative al
bras, similar to those discussed recently by Gelfandet al.31

III. GENERAL FORMULAS FOR PHYSICAL QUANTITIES
IN MULTICHANNEL PERIODIC SYSTEMS

Even though we do not yet know what the polynomialspn
are, we assume their existence and deduce general ex
sion for the scattering amplitudes, the energy eigenval
the eigenfunctions, and some other transport propertie
terms of the polynomials. Using Eqs.~20!–~22!, it is easy to
obtain

aN,n5pN,n2g21dgpN,n21 , ~24!

which together with Eq.~18! permits us to write the globa
multichannel transmission and reflection amplitudes as

tN,n5@pN,n2pN,n21~g21dg!†#21, ~25!

r N,n52@pN,n2~b21ab!pN,n21#21gpN,n21 . ~26!

These interesting results show that then-cell scattering am-
plitudes can be expressed entirely in terms of single-
transfer-matrix blocks~or single-cell transmission and refle
tion amplitudesr, t, r 8, and t8) and the polynomialspN,n .
For time-reversal-invariant and spin-independent syste
tN,n is just the transpose oftN,n8 , and g5b* , d5a* . For
spin-dependent systemst85kTtTk and g5kTb* k, d
5kTa* k. The previous relations are simple and of gene
validity at the same time. In the particular, but very mu
used 1D one-channel case, the transmission amplitude
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tn5
t†

pnt†2pn21
~27!

takes the form

tn5
t*

t* Un2Un21

, ~28!

which is an extremely simple function of the Chebysh
polynomials of the second kind,Un(aR) and Un21(aR)
~evaluatedat the real part ofa), and of the single-cell trans
mission amplitudet. Using the identityUnUn225Un21

2 21,
it is easy to show that the transmission coefficientTn
5utnu2 can be written as32

Tn5
T

T2Un21
2 ~12T!

, ~29!

with an evident resonant behavior. HereT5utu2 is the single-
cell transmission coefficient. The transmission resonan
occur precisely when the polynomialUn21 becomes zero.
Therefore thenth resonant energyEm,n is the solution of

~aR!n5cos
np

n
, ~30!

with n51,2,3, . . . ,n21. The indexm labels the bands, a
discussed above, andn labels the intraband states.These
fundamental quantities cannot be determined with the c
rent solid state theory but they can be with the present
proach. Although it is not clear that the actual experimen
precision may allow one to discriminate the intraband ene
states, we expect that for bounded finite periodic system
will be possible to observe the fine energy structure us
optical excitation experiments. This could have interest
consequences in the applied physics field. In Sec. V we
discuss some simple examples. Notice that, according to
~29!, each energy band contains, as often stated with
proof in the textbooks, the same number of resonant ener
as the number of confining wells.

Before going ahead and presenting new expressions
other physical quantities, let us apply the previous equati
~29! and ~30! to the sequence of square-barrier potenti
formed in the conduction band of the superlatti
(GaAs/AlGaAs)n shown in Fig. 1. For reasons of simplicit
let us consider the 1D one-channel approximation. In Fig
we present a series of graphs of the transmission coeffic
Tn as a function of the particle’s energyE and the number of
cells n. It is evident that by increasingn, the band structure
gradually builds up. The aim of the sequence of graphs
Fig. 7 is to illustrate the formation of the band structure
the finite periodic system grows, for fixed single-cell leng
l c5a01b0. One can observe the resonance splitting proc
We can also observe that forn of order 5 the band structur
at low energies is reasonably well defined.

Especially simple, in its functional structure, are the g
bal Landauer multichannel resistance amplitudesRN,n8
5r N,n8 (tN,n)21 and RN,n52(tN,n8 )21r N,n . These quantities
in terms of the polynomialspN,n , are just

RN,n8 5RN,18 pN,n21 , RN,n5RN,1pN,n21 .

Here, the tunneling and interference phenomena app
nicely factorized.
0-7
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A quantity often used in the transport theory is the Lan
auer multichannel conductance matrixGN5tN(r N

† r N)21tN
†

which for then-cell system becomes

GN,n5
1

pN,n21
GN,1S 1

pN,n21
D †

. ~31!

In the one-channel case, then-cell conductance is just

Gn5
1

~Un21!2
G. ~32!

The zeros of the polynomial determine both the points
divergence ofGn and the zeros of the resistanceRn . They
also determine the resonant energy eigenvaluesEm,n as well
as the resonances of the global transmission coefficientTn .

So far, we have given a number of nontrivial but e
tremely appealing relations.The n-cell Landauer resistance
amplitude is just the product of the one-cell Landauer res
tance amplitude R and the polynomial pn21. The polynomial
pN,n has the information on the number of layers,n; on the
number of channels,N; and, more importantly, on the com
plex but precise interference phenomena.

Another significant physical quantity to describe period
systems is the superlattice wave function. In the stand
theory of infinite periodic systems the Bloch’s function
taken, with no further reflection, asthe natural and obvious
wave function. However, this is not quite correct for fini
systems; the illusion of having a wave function with t
apparent simplicity of Bloch’s structure may considerab

FIG. 7. The metamorphosis of the transmission coefficientTn as
a function of the particle’s energyE and the number of cellsn. The
band structure is built up as the number of cells,n increases. The
formation of bands is accompanied by a resonance splitting proc
Notice that forn of the order of 5 the band structure at low energ
is reasonably well defined.
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complicate the calculation of other physical quantities. In
transfer-matrix theory the wave functions of finite period
systems can be obtained in a very simple way. From
definition of the transfer matrix, we known that once t
single-cell problem has been solved@i.e., once the transfe
matrix M (z0 ,z08), for any z0<z08<z15z01 l c has been de-
termined# one is able to evaluate the wave function at a
other pointz5z081 j l c within the j 11 cell of the periodic
system or superlattice~with j 50,1,2, . . . ,n21; see Fig. 8!.
In fact, the state vectors atz08 andz are related by

S ajwW ~z!

bjwQ ~z!
D 5S a j b j

g j d j
D S a0wW ~z08!

b0wQ ~z08!
D , ~33!

with

a j5pj2g21dgpj 21 , ~34!

b j5b21pj 21 , ~35!

d j5pj2b21abpj 21 , ~36!

g j5g21pj 21 . ~37!

In the same way, the state vector atz is related with the state
vector at the end of the superlattice, where only the transm
ted component must be considered.

For an open system, as the one shown in Fig. 8, the rig
side propagating state vector atz is

wW ~z!5wW ~z08!S a j2b j

g21pn21

~pn2b21abpn21!
D , ~38!

and the left-side propagating state vector atz is

wQ ~z!5wW ~z08!S g j2d j

g21pn21

~pn2b21abpn21!
D . ~39!

Evaluating these state vectors atEm,n , we have the corre-
sponding resonant states. In the 1D one-channel case
matrix elementsa j ,b j , . . . are simple functions of the
Chebyshev polynomials, as can be inferred from Eqs.~21!
and ~34!–~37!. These matrix elements, together with Eq

ss.

FIG. 8. The wave function at any pointz in the j 11 cell ~with
j 50,1,2, . . . ,n21) of an arbitraryn-cell system can be determine
using the transfer matrixM (z08 ,z0) for anyz0<z08<z15z01 l c and
the relations~44!–~47!. Since the wave vector atz is related to the
wave vector atz0 by the transfer matrixM (z,z0), we can obtain this
matrix either asM (zj ,z0) followed by M (z,zj ) or as M (z08 ,z0)
followed by M (z,z08) as depicted in the lower part of this figure.
0-8
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THEORY OF FINITE PERIODIC SYSTEMS: GENERAL . . . PHYSICAL REVIEW B65 205120
~38! and ~39!, give the wave functions. In Sec. V, the wav
functions and resonant functions for a particular exam
will be evaluated and plotted. These and the other relati
already presented in this section are some of the gen
expressions obtained in this theory. In the subsequent p
we will extend this approach to describe the physics
bounded and quasibounded systems and real semicondu

As mentioned in the Introduction, a significant charact
istic of the global or superlattice physical quantities resid
in their functional structure, expressed entirely in terms
the corresponding single-cell quantities and the polynom
pN,m . It is clear then that in order to evaluate these quanti
we first need to determine the polynomialspN,m . This will
be done in the next section. Keep in mind that in the 1D c
we already found thatp1,m is precisely a Chebyshev polyno
mial of the second kind,Um .

IV. POLYNOMIALS PN,n

We shall now briefly refer to the solutions of the recu
rence relations. In the 1D one-channel case,a, b, g, andd
are complex numbers, and the recurrence relations forbn ~or
dn) andpn reduce to the Chebyshev’s recurrence relation

pn1g1pn211pn2250, ~40!

with p2150, p051, and

g152Tr M . ~41!

Although the Chebyshev polynomials and the genera
functions method are well known, we shall recall them
Appendix E 1 to show the notation employed and to int
duce the procedure used in the most general case. Usin
eigenvalue representation, i.e., the eigenvaluesl1 andl2 of
the 232 transfer matrix, the Chebyshev polynomial of t
second kind can be written as

pn5
l1

n112l2
n11

l22l1
. ~42!

In Bargmann’s representation, the unit-cell amplitudest, r
and the eigenvaluesl1 , l2 for a time-reversal-invariant sys
tem can be written, respectively, as

t5ei (fu2fv)
1

coshx
, ~43!

r 5e22ifutanhx, ~44!

l1,25cos~fu2fv!coshx6A@cos~fu2fv!coshx#221.
~45!

For N>2, we have the MRR

pN,n52zpN,n212hpN,n22 , ~46!

with z52(b21ab1d) andh5(db21ab2gb). This is an
interesting and important problem. Solving this relation,
can expect a multichannel description of the transport p
cesses in finite periodic systems. Even though the prob
might seem rather complicated, it is nevertheless soluble4,21
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We show, in Appendix E 2, that the matrix polynomials s
isfying the matrix recurrence relation are

pN,n5 (
k50

n

(
l 50

k

pN,lgk2 lqn2k for n,2N ~47!

and

pN,n5 (
k50

2N21

(
l 50

k

pN,lgk2 lqn2k for n>2N. ~48!

Here the coefficientsgj , qn are the symmetric functions

gj5~2 ! j (
l 1, l 2,•••, l j

2N

l l 1
l l 2

•••l l j
, g051, ~49!

and

qn5(
i 51

2N
l i

2N1n21

)
j Þ i

2N

~l i2l j !

I N . ~50!

It is obvious from these results that, in order to obta
a polynomial pN,n , one has to first determine the initia
2N21 polynomialspN,l , which can be obtained by usin
the matrix recurrence relation. Notice also that for a giv
number of channels,N<n/2, we have to evaluate the sum

pN,n5 (
k50

2N21

ck,npN,k ,

with ck,n5qn2k(
l 50

k

gk2 l , ~51!

where the scalarsck,n are the only quantities which depen
on the size of the systemL5nlc .

Based on these results we now consider some simple
alizations, which when applied to multichannel transmiss
coefficients define some useful relations and thetransition
probabilities.

A. One propagating mode

For N51 andn cells, Eq.~47! reduces to

p1,n5c0,n2c1,ng15q1,n5qn5(
i 51

2
l i

n11

)
j Þ i

2

~l i2l j !

, ~52!

which is precisely the well-known Chebyshev polynom
Un(trM /2) of the second kind given in Eq.~42!.

B. Two propagating modes

For N52 andn>4, the 232 matrix polynomialsp2,n are
determined from

p2,n5c0,nI 22c1,nz1c2,n~z22h!2c3,n~z32zh2hz!,
~53!
0-9
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PEDRO PEREYRA AND EDITH CASTILLO PHYSICAL REVIEW B65 205120
with z andh the coefficients of the matrix recurrence rel
tion. Once the matricesz, z22h, andz32zh2hz are cal-
culated, all we need is to evaluate the coefficientsck,n for the
corresponding number of cellsn. For systems with two
propagating modes, the matricesp2,n play the same role a
the Chebyshev polynomials in the case of one propaga
mode. The matrix polynomials are, however, more comp
and contain abundant information on the rather complica
multichannel transport processes.

C. Transition probabilities and channel mixing

The transmission amplitude matrices in Eqs.~25! and~26!
depending on the polynomialspN,n are loaded with informa-
tion and open up the possibility of calculating quantities su
as channeltransition probabilities, whose amplitudes ar
given by the transmission matrix elementstn,i j [(tn) i j for
iÞ j . In principle, these quantities provide information on t
channel mixing phenomena. An incoming particle in thej th
propagating mode might come out from the scatterer sys
in the i th propagating mode. These types of processes
induced by channel coupling interactions, expected wh
ever the channel coupling parametersKi j , for iÞ j , are dif-
ferent from zero. The transmission probabilityTNn,i j ~or just
Tn,i j ), from channelj on the left-to channeli on the right-
hand side, is obtained from

Tn,i j 5utNn,i j u25u$@pNn2pNn21~b21ab!T#21% i j u2.
~54!

Being able to calculate these transmission probabilities,
possible to evaluate other quantities as interesting as the
transmission probabilityTNn,i ~or just Tn,i) to channel i,
which regardless of the incoming channelj is given by

Tn,i5(
j 51

N

utNn,i j u2. ~55!

A quantity where the channel information disappears, an
certainly much easier to measure, is the well-known cond
tance or total transmission probabilityTn through then-cell
system. This is defined as

Gn5Tn5Tr tNntNn
† 5(

i 51

N

Tn,i5 (
i , j 51

N

utNn,i j u2. ~56!

We are now ready to calculate all these quantities
discuss the behavior of the transmission-reflection proba
ties and other interesting superlattice properties for both
bitrary and specific potential functions.

V. ILLUSTRATIVE FINITE PERIODIC SYSTEMS

In the first part of this section we will apply our approa
to several examples of one-channel periodic systems an
the second part to simple periodic systems of two and th
propagating modes.
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A. One-channel systems

For the purpose of discussing general qualitative prop
ties, with no reference to any particular potential functio
we will first look into the transmission coefficients in a 1
system as functions of the Bargmann parametersx and f.
We will then use the general results of Sec. III to evalu
transport properties for specific 1-D systems. The phys
properties of interest that will be considered here include
band structure building process mentioned above, the b
structure tailoring, the resonant energies and wave functi
the level density, and the Kronig-Penney model. In the l
part of this subsection, we shall also consider an opt
multilayer system.

1. Band structure as a general property of periodic systems

In general we think of transfer matrices as associated w
some specific system. It is possible, however, to think
transfer matrices expressed in terms of nonspecific and ra
general parameters, such as the Bargmann parameters
tioned before. Using these parameters we can analyze
behavior of some functions appearing in the universal
pressions obtained so far and deduce universal propertie
lated to any periodic systems. For this purpose it is con
nient to plot the physical quantities as functions of the fr
parameters. The most general 1D~one-channel! transfer ma-
trix of the orthogonal class contains three free paramete24

only two of them being relevant to the physical quantiti
considered here. In Bargmann’s representation we have

t5ei (fu2fv)
1

coshx
[eif

1

coshx
, ~57!

g15cos~fu2fv!coshx[cosfcoshx, ~58!

and

l1,25cosfcoshx6A~cosfcoshx!221. ~59!

The single-cell Landauer conductanceG5sinh22x and
the single-cell transmission probabilityT5cosh22x do not
depend on the phasef; hence, they are monotonic function
of x as can be seen in Fig. 9~a!. For x varying from 0 to
infinity, T decreases monotonously from 1 to 0, whileG goes
from infinity to zero. If we plot these quantities as functio
of the energy@see Fig. 10~a! below#, they will increase as the
energy grows sincex decreases with the energy.

The n-cell conductanceGn5G/(pn21)2 and then -cell
transmission coefficientTn5T/@T2pn21

2 (12T)# depend on
the phasef through the polynomialspn21, which, as men-
tioned before, carry information on the periodic nature of t
system and on the phase interference phenomena. The
pearance of a resonant band structure@see Fig. 9~b!# is a
universal effect independent of the specific potential sha
The band and gap widths are given by TrM /2. In order to
understand the role of the polynomialpn , we plot the nine-
cell transmission probabilityT9 together with the Chebyshe
polynomialp921, for a fixedx in Fig. 9~b!. The Chebyshev
polynomial pn21, evaluated ataR5Tr M /2, determines not
only the position and bandwidths, it determines also the
0-10
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THEORY OF FINITE PERIODIC SYSTEMS: GENERAL . . . PHYSICAL REVIEW B65 205120
FIG. 9. Various physical quantities plotted as functions of
Bargmann parameters.~a! The single-cell Landauer conductanc
G5sinh22x and the single-cell transmission probabilityT
5cosh22x are monotonous functions ofx. ~b! The nine-cell trans-
mission coefficientT9 together with the Chebyshev polynomi
p921 and the transfer matrix trace TrM /2, are plotted as functions
of the phasef for a fixedx. From these figures and the bahavior
the transmission coefficients in~c!, it is evident that the responsibl
of the band structure and the resonant behavior is the phase c
ence phenomena.
20512
sition of the tunneling resonances. Remember thatan satis-
fies recurrence relations similar to those ofpn21. This fact is
especially interesting in relation to multichannel systems.
conclude this part we plot in Fig. 9~c! the global four-cell
transmission coefficientT4(f,x) and the contour graph fo
T8(f,x) ~here the black regions correspond to lower tra
mission coefficients!, both as functions off andx. In these
figures the previously discussed behavior is evident: vary
f we generate the resonant structure while varyingx the gap
and the allowed energy bands are distinguished very cle
In terms of the free parametersf andx, the band structure
appears as a periodic repetition of the single-band beha
i.e., Tn(f,x)5Tn(f12p,x). If, instead, we plot these
quantities as functions of the energy and the potential par
eters, the bandwidths will be different at different ener
regions~see Fig. 10 below!.
er-

FIG. 10. The transmission coefficients for a periodic system
d-barrier potentials, separated consecutively by a distancea0, plot-
ted as functions of the Bargmann parameterx and the incoming
particle’s energyE. The bandwidths increase with the energy,
corresponds to the monotonous grow of the phasef with the
energy~see Fig. 5!.
0-11
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2. Transmission through square- andd-barrier potential
superlattices

Let us now consider two specific and well known 1
potential functions: thesquare- andd-barrier potentials. For
d barriers of strengthV0, separated consecutively by a di
tancea0, the Bargmann parametersx andf are

x5cosh21S 11
V0

2ED 1/2

~60!

and

f5
A2meE

\
a02tan21AV0

2E
. ~61!

Using these parameters, we can easily evaluate the trans
sion coefficients shown in Fig. 10. Their remarkable qual
tive similarity with the corresponding coefficients for the a
bitrary and nonspecific periodic system in Fig. 9 is evide
The transmission coefficients are now plotted as function
the energyE and the parameterx ~which also depends on th
energy!. As suggested before and can be seen in Fig. 10~a!,
the parameterx is a monotonous decreasing function of t
energy, whileT andG increase.

For square barriers with heightV0 and widthb0 separated
by potential wells of thicknessa0, the Bargmann parameter
x andf[fu2fv are ~see Appendix B!

x5cosh21F11
v0

2

e~e2v0!
sinh2SA2mb* ~e2v0!

\
D 1/2G

~62!

and

f5
A2mv* e

\ S 11
a0

b0
D

1tan21F 2e2v0

Ae~e2v0!
tanhSA2mb* ~e2v0!

\
D G . ~63!

Here,mv* andmb* are the effective masses in the valley a
barrier, respectively,33 e5Eb0

2 andv05V0b0
2. As mentioned

before, it is not necessary to use the Bargmann’s represe
tion, unless one feels it convenient or one is interested
analyzing generic properties as has been done in the prev
subsection. Using these functions and the superlattice for
las given above, we can explore physical properties suc
the band structure, the resonant energies, the resonant s
lattice functions, the density of states, the superlattice tun
ing time, the peak to valley ratios, etc.

In Fig. 11, the same quantities as in Figs. 9 and 10
now for square-barrier chains are plotted. The qualitat
similarities are also evident. The formation of resonant ba
with higher transmission probabilities at certain energies
definitely a phase coherence effect. At low energies the v
ishing of the transmission probability in the gap regions i
consequence of the phase interference phenomena an
tunneling effect. This band effect becomes much more p
nounced as the number of cells,n, increases. At this point i
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is worth emphasizing that the periodicity and finiteness
fully incorporated in the theory through simple and prec
functional dependence of the physical quantities upon
polynomials pn . It is also worth emphasizing that all w
need in order to evaluate an important number of relev
superlattice physical quantities is to determine, with t
highest possible precision, the single-cell transfer matrix.
mentioned before, the band structure in the one-mode
proximation is easily obtained by plotting the transfer-mat
trace

Tr M052 cosf coshx.

Other quantities will be considered in the next subsection

3. Resonant energies and resonant wave functions, level densi
and the KP model

Here we will present some specific results for the reson
energies and resonant states in the transport process thr

FIG. 11. The transmission coefficients for a periodic system
square barriers with heightV0 and widthb0, separated by potentia
wells of widtha0, are plotted as functions of the Bargmann para
eterx and the incoming particle’s energyE. The behavior is quali-
tatively similar as for thed-barrier potential and as for the arbitrar
and generic case plotted in Fig. 8.
0-12
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an open square-barrier superlattice, as the one shown in
3. Eigenvalues and eigenfunctions will be discussed in
sequel~part II! of this theory. As mentioned above, thenth
resonant energyEm,n is obtained by solving the implici
equation

~aR!n5cos
np

n
,

with n51,2, . . . ,n21,

whereaR is the real part ofa and (aR)n is thenth zero of
the Chebyshev polynomial. The indexm labels the bands
and the indexn labels the intraband energy resonances,
culiar to periodic systems and entirely determined by ph
coherence. In the transfer-matrix approach the allowed
ergy bands are those energies which satisfy the cond
cosf coshx 5 uaRu < 1. For the n-cell square-barrier sys
tem, whose transfer matrix is calculated in the Appendix
the resonant energy equation becomes

coskna0coshqnb02
kn

22qn
2

2knqn
sinkna0sinhqnb05cos

np

n
,

~64!

with kn
252mv* Em,n /\2 and qn

252mb* (V02Em,n)/\2. Each
of the energy bands contains the same number of reso
energies as the number of confining wells, in this ca
n21. In Fig. 12, some of these energies and the associ
level densities are plotted for different values ofn. Notice
that the level density behavior as a function ofn tends rap-
idly to that of the Kronig-Penney model,34 although the con-
tinuous spectrum limit is only reached whenn→`.

For TRI scattering systems like the one shown in Fig.
the wave function atz is given by

C~z,E!5wW ~z08!Fa j1b j* 2~a j* 1b j !
bn*

an*
G ,

with j 50,1, . . . ,n21. ~65!

FIG. 12. The level density in the first subband of a finite and
infinite ~Kronig-Penney! GaAs (Al0.3Ga0.7As/GaAs)n superlattice
with a5100 nm, b530 nm, andV050.23 eV. The discrete en
ergy spectrum plotted forn59 andn550 approaches the continu
ous spectrum of the Kronig-Penney model whenn→`.
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It is important to notice that the wave function depends
the various potential parameters, the particle’s energyE, and
the total number of cells,n. Notice also that while 0<z08
< l c , the coordinatez can take values between 0 andnlc .
When z is in the first cell it coincides withz08 , so that

C(z0 ,E)5 w→(z0)(12bn* /an* ), since for j 50, a051 and
b050. It is evident that evaluating the functionC(z,E) at
the resonant energiesEm,n we get the corresponding resona
function

Cm,n~z!5C~z,Em,n!. ~66!

In Figs. 13~c!–13~f! we plot the wave function along th
superlattice GaAs~AlGaAs/GaAs! ~Ref. 12! at four different

n

FIG. 13. Extended, localized, and resonant wave functions
independent electrons moving along a superlatice like the
shown here and for the energy values indicated with an arrow in
transmission coefficient. In~c! and ~e! we have the resonant wav
functionsfm,n obtained by evaluating Eq.~75! at resonant energie
Em,n in the second and third subbands, obtained from Eq.~74!. The
number of oscilation of the envelope corresponds to the indexn. In
~d! we have a localized wave function obtained by evaluating
~75! for an energy in the gap. In~f! the wave function is evaluated
at an arbitrary energy in the third allowed energy band.
0-13
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energies indicated with arrows in the transmission coe
cients in Fig. 13~a!. While in Figs. 13~c! and 13~e!, the func-
tions uCm,n(z)u2 correspond to the third resonant energies
the second (n52) and third (n53) energy bands~in these
cases the resonant bound-state functions are modulated
oscillating envelope function withn11 minima!, in Fig.
13~d! the wave function is evaluated for an energy in the g
between the second and third bands. In Fig. 13~f! the wave
function is plotted for an arbitrary energyE (ÞEm,n) inside
a band. In the last case we have an extended wave func
with a very complicated behavior along the superlattice.
z50 and z5nlc the resonant wave functions are differe
from zero, because they describe not only the extended
also the transmitted states, unless the energy lies in a
region and the probability of finding the particles at the en
of the system is different from zero. This will, of cours
change for bounded systems. The same happens with
function uC2u2 in Fig. 12~f!, wherem52. In Fig. 13~d!, the
behavior of the wave function in the gap is not only comp
ible with the well-known vanishing of the transmission c
efficient, it shows also a localization effect induced by t
phase coherence, which is an appealing result.

4. Band structure tailoring: Levels and bands in the gaps

One of the most significant and interesting properties
periodic systems, in general, and of multilayer superlattic
in particular, is the possibility of tailoring their band stru
ture. Pronounced macroscopic effects, such as the increa
the electric conductivity of real semiconductors~containing
defects and different types of impurity atoms!, rest on the
appearance of extra energy levels in the gaps of ideal s
conductors. The superlattices become in this sense quit
tractive because of the possibility of modifying their perio
icity by ‘‘inserting’’ at will extra energy levels in the subban
gaps. Different types of topological defects, referred to h
for the sake of simplicity as ‘‘impurities,’’ can effectively b
created in these heterostructures by changing the valley~bar-
rier!, depth~height!, or width of certain layers. As a conse
quence, the band structure is modified and the resonant p
move to new positions. Using the method and formulas p
sented here, it is rather simple to determine these kind
effects on the band structure and, especially, on the impu
level position in the band gaps. To illustrate this, we sh
consideroneandtwo substitutional ‘‘valley impurities’’~with
valley widthsa0i) immersed in an otherwise periodic squar
barrier ord-barrier chain. In our examples, the valley imp
rities are produced by varying the well’s width such that t
impurity width isa0i5zia0 with ziÞ1. We can also vary the
valley depth. This implies a differentwave number ki at the
impurity layer. Other changes of local-potential paramet
are also possible.

In general, if we haves valley impurities in a chain ofn
cells, the whole superlattice transfer matrix will be given

Mn5Mn1
Wi 1

Mn2
•••Mns

Wi s
Mns11

,

with n5(
j 51

s11

nj , ~67!
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Wi5S eidiki 0

0 e2 idiki
D 5S wi 0

0 wi*
D , ~68!

as the valley-impurity transfer matrix. For a chain with a fe
impurities,an andbn can easily be calculated using for ea
of the periodic sectors the already known expression

anl
5pnl

2pnl 21
~b21ab!, ~69!

which in the one-channel limit is just

anl
5pnl

2pnl 21
a, ~70!

wherepnl
is the Chebyshev polynomial of ordernl evaluated

at Re(a). In the particular case of onlyoneimpurity located,
say, at the center of the chain~which meansn15n2), we
have

an5an1
wian1

1bn1
wibn1

* 52~ tn
†!21. ~71!

In order to evaluate some physical quantities and to
serve the impurity effects on a specific band structure, le
consider again a square-barrier superlattice like the
shown in Fig. 14~a! with a052 nm, b0510 nm, andV0
50.23 eV. For this system, having a valley impurity at t
center of the superlattice andn510 barriers, we plot in Figs
14~b!–14~f! the total transmission coefficient for differen
values of the impurity widtha0i5zia0. Whenzi,1, the im-
purity valley width is narrower thana0 and corresponds
qualitatively, to a negative differenceDZ,0 between the
impurity and the host core charge numbers~acceptors of
electrons!. In the left-hand side column, the transmission c
efficients are plotted forzi50.9,0.8, . . . ,0.5. As expected
whenDZ,0, an energy level separates from the upper ba
edges and moves towards the upper bands aszi departs from
1. It is interesting to notice that the resonances in the ba
are strongly modified. When the energy level approaches
next upper band a new energy level separates from the
posite side of that band. This kind ofenergy-level repulsion
andband crossingare interesting and novel effects that c
clearly be seen in this example. For the energy level app
ing between the second and third bands, the band-cros
effect occurs whenzi;0.5. Similarly, for wider (zi.1) im-
purity valleys the behavior corresponds to donors of el
trons withDZ.0. Aszi departs from 1 an energy level sep
rates from the lower band edge and moves towards lo
energies aszi increases. It is obvious that by adjusting th
parameterzi we can place the impurity level at any desire
position.

Increasing the number of impurities, but keeping const
their separation, a second-order superlattice is built up
the coherence phenomena manifests, producing anothe
teresting impurity effect in the band structure. The sing
resonances in the gaps split and narrow bands appear,
cisely where the single peaks were at before, with as m
resonances as impurities contained in the superlattice. T
lustrate this behavior, we consider the systems shown
0-14
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FIG. 14. In this sequence we have the transmission coeffici
and the modified band structure for a periodic potential contain
one impurity with valley widtha05zia0 and zi,1 which corre-
sponds, qualitatively, to a negative differenceDZ,0 between the
impurity and the host core charge numbers~acceptors of electrons!.
As zi departs from 1, thelevels in the gapmove towards higher
energies. The level repulsion effect is also apparent in these fig
For zi;0.5, the level in the gap enters into the band and ano
level abandons the band from the opposite band edge.
20512
Figs. 15~a! and 15~b!, with one- and two-valley impurities
respectively. In the left-hand side column the transmiss
coefficients are shown for the one-impurity system, while
the right-hand side column, the transmission coefficients c
responds to the system with two impurities. By adjusting
impurity valley width and enlarging the superlattice to i
crease the number of impurities, narrow bands can also
generated at any desired position. If, on the other hand,
keep the number of impurities constant while increasing
total number of cells, i.e., lowering the impurity concentr
tion, the bands in the gaps remain in the same positions
their width diminishes rapidly. To study this effect, let u
consider superlattices of different size (n520, 28, and 36!
but with the same numbers53 of ~equidistant! impurities.
In Fig. 16 we plot the transmission coefficients. Going dow
from Fig. 16~a! to Fig. 16~c! the sizen increases~while the
impurity concentration diminishes!, and simultaneously the
impurity bands become narrower. It is interesting to not
that the principal bands are strongly modified and even br
in thinner bands. The appearance of multiple, narrower, cl
minibands might favor the conduction process.

The effects on the band structure are qualitatively sim
for square- andd-barrier chains. Although these results a
well known and can be calculated by evaluating products
transfer matrices, our formulas permit simpler and easy
culations. The technological consequences of playing w
these properties may be of great interest. We presented
an easy method for making parametric changes and
evaluating the appearance of levels in the gaps and for b
structure tailoring.

As for the one-impurity or defect chains, the number
resonant pairs of levels per unit energy depends onzi .

5. Multilayer optical power limiting

Optical multilayer systems have been considered
studying optical properties. The superluminal tunneli
times have been studied within this approach. The phase
predictions22 agree impressively well with the experiment
measurements.35 Linear and nonlinear response system pro
erties have been also of interest recently.23 Linear response
systems are described by

d2E
dz2

52e1k0
2E ~72!

and the nonlinear response systems, in the ‘‘single-layer
proximation’’ of Ref. 23, by

d2E
dz2

52e2k0
2~12uE0u2!E. ~73!

Heree i is the dielectric constant andE0 the incident electric
field with frequency v05k0c. It is easy to show
that for a system of alternating layers of linear a
nonlinear responses, with wave numbersk5k0Ae1 and K
5k0Ae2(12uE 0u2), and widthsa0 andb0, respectively, the
transfer-matrix elements are

ts
g

es.
er
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FIG. 15. The transmission coefficients in th
left and right columns correspond to superlattic
with one and two impurities, respectively. In eac
column we havezi50.9, 1.0, and 1.1. As ex-
pected forzi.1, corresponding~qualitatively! to
a positive differenceDZ.0 between the impu-
rity and the host core charge numbers~donors of
electrons!, the level in the gap separates from th
lower band edge. It is also nice to see that i
creasing the superlatice and simultaneously
number of impurities, with the samezi , the
single level in the gap splits to form a miniban
in the gap.
ef-
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FIG. 16. The purpose of the three graphs here is to show
impurity concentration effect. Keeping the number of impuriti
constant (ni53) but increasing the total number of cells@from n
520 in ~a! to n536 in ~c!#, i.e., lowering the impurity concentra
tion, the bands in the gaps remain in the same positions but
width reduce rapidly.
20512
a5
1

4kK
@~K1k!2eiu12~K2k!2e2 iu2# ~74!

and

b5
~K22k2!

4kK
~eiu22eiu1!. ~75!

Hereu15(2K2k)b02ka0 andu25(2K1k)(a01b0). Us-
ing this transfer matrix, the multichannel transmission co
ficients have been calculated. The transmission probabil
obtained, as functions of the incident intensityuE0u, are
shown in Figs. 17~a!–17~c!, for n510, a05b050.5, e1
51.2, e252.5, and different values ofk0c. Incident intensity
cutoffs are predicted. This could be related to power limiti
as suggested in Ref. 23.

B. Multichannel transmission through †GaAsÕ„d-scatterer
layer…‡n superlattices

In order to study simple examples of multichannel tran
port processes, let us consider a 3D superlat
BABAB. . . ABAB, whereB is a thick semiconducting laye
andA is a kind of monoatomic layer, modeled as a plane
attractive or repulsived-scatterer centers; see Fig. 18. A
suming the periodic potential

VP~x,y,z!5gd~z2h l c! (
n51

Nn

(
m51

Nm

d~x2xn!d~y2ym!,

h51, . . . ,n, ~76!

with longitudinal lattice parameterl c and interaction strength
g, one can easily obtain the channel coupling parameter

e

ir
0-16
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Ki j 5
8p2mg

h2
d~z2h l c! (

n51

Nn

(
m51

Nm

f i* ~xn ,ym!f j~xn ,ym!

5d~z2h l c!G i j , ~77!

where thei channel index refers to any pair of quantu
numbers nx ,ny 51,2,3, . . . in the wave function
fnxny

(x,y), corresponding to the transverse energy levels

Ei5
\2p2

2m*
S nx

2

wx
2

1
ny

2

wy
2D . ~78!

FIG. 17. All graphs in this figure correspond to an optical h
erostructure withn512. In ~a!, ~b!, and ~c! the transmission coef
ficients are plotted as functions of the incident field intensityuE0u,
for different field frequenciesv0. Varying this parameter we ca
find different band structures. An interesting result is the wide g
whenv050.5. In ~d! and ~e! the band structure as a fuction of th
frequency, for fixed incident field intensityuE0u, has interesting and
distinct features.
20512
The channel states of Eq.~3!,

f i~x,y!5
2

Awxwy
(

$ni
2
5nx

2
1ny

2%

sin
nxpx

wx
sin

nypy

wy
, ~79!

are either nondegenerate or doubly degenerate states. Ta
into account these definitions, and proceeding as usual
d potentials, it is easy to determine thed-layer ~time-
reversal-invariant and flux-conserving! transfer matrix

M d5S ad bd

bd* ad*
D , ~80!

with

ad5I N1bd , bd5
1

2i S G11

k1

G12

k1

G21

k2

G22

k2

.

.

D ,
G i j

G j i
5

ki

kj
.

~81!

Although we will obtain here various results for an arbitra
number of channels,N, to evaluate the transmission coeffi
cients Ti j , we shall restrict ourselves toN52 and N53
open channels or propagating modes.

To use the polynomials and invariant functions mention
above, it is necessary to determine the eigenvalues of
2N32N transfer matrixM and to evaluate the matrix poly
nomials. To this purpose, we need first to obtain the unit-c
transfer matrix. A unit cell of our superlattice contains a lay
A and a layerB, which we find convenient to build as
half-layerB followed by the plane ofd-scatterer centers an
again a half-layerB, i.e., B1/2AB1/2. Thus the single-cell
transfer matrix is given by

-

p

FIG. 18. A soluble multichannel superlatic
BABAB. . . ABAB, where monoatomic layersA ~modeled as 2D
arrays of attractive or repulsived-scatterer centers! alternate with
dicker semiconductor layersB.
0-17
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M5W1/2M dW1/25S a b

b* a* D , ~82!

with

W5S v 0

0 v* D , v5S eik1b 0

0 eik2b

.
D . ~83!

It is easy to verify that in this case

b5v1/2q i jqT~v* !1/2, ~84!

with j diagonal andq an orthogonalN3N matrix. Defining
appropriate unitary matricesu5v1/2q andv52 iuT, we get,
as could be expected, a realization of Bargmann’s repre
tation, i.e.,b5u sinhxv* with

sinhx5j5S j1

j2

.

.

D . ~85!

It is not difficult to show that the transfer-matrix eigenvalu
are given, in this case, by

l j5coshx j1sinhx j5A11j j
21j j ,

l j 1N5coshx j 1N2sinhx j 1N5A11j j
22j j . ~86!

To plot these functions, we assume that thed-scatterer cen-
ters in thex-y plane are located in a square lattice. If w
write the functionsfni

(xn ,ym) as

fni
~xn ,ym!5

2

Awxwy

sinFnxp

Nn
~n2x1!GsinFnyp

Nm
~m2y1!G ,

with x1 andy1 the coordinates of thed center nearest to th
origin, it is easy to see that the coupling parametersG i j in
Eq. ~77! depend strongly on the coordinatesx1 ,y1.

Let us now evaluate transmission probabilitiesutNn,i j u2 for
some specific cases. In Figs. 19~a!–19~c! and 20~a!–20~d!,
these quantities are plotted for the two-channel caseN
52). In Figs. 21 and 22, we consider a larger number
propagating modes (N.2). To simplify the notation, the
n-cell transmission coefficients (Tn) i , j are denoted just a
Ti , j .

Since some of the multiple features characteristic of
multichannel processes can already be observed in the
channel case, we shall start discussing this system. Fo
superlattice that we have just introduced, let us consider
particular cases, differentiated mostly by their interact
strength signs. In both cases we will concentrate on the ch
nel coupling effects. While in Fig. 19 the coupling effects a
observed basically at energies below the channel thres
Eth2 ~with negligible band distortion!, in Fig. 20 strong band
distortions are observed. For the superlattice with transm
sion coefficients shown in Fig. 19, we havel c520 Å, wx
5wy540 Å, xn151/3, y151/7, Nn5Nm56 ~meaning 36
20512
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d-scatterer centers for eachd layer!, andg52500 eV. For
the transmission coefficients in Fig. 20 we considerl c
520 Å, wx5100 Å, wy550 Å, x15y151/2, Nn530,
Nm515 ~meaning 450d-scatterer centers for eachd layer!,
andg5800 eV.

It is interesting to see that for theattractive d-scatterer
centers (g,0), very nice resonances, with typical resonan
shape and features, appear because of the coupling bet
an open and an evanescent state@see Fig. 19~b!#. The reso-

FIG. 19. Total and partial transmission coefficients in the tw
channel case (N52), for attractive d-scatterer centers (g,0). In
~a! and ~b!, n51 and an isolated resonance, above the chann
thresholdEth1 and belowEth2, is produced by coupling between a
open and a bounded evanescent state~in the continuum!. The reso-
nance atE51.242 eV is magnified and plotted in~b!. The strong
suppression inT11 is accompanied by a resonant behavior ofT12

that can be fitted quite well with a Lorenzian function. As the nu
ber of cells,n, grows@see graph~c!# for n59 the resonance splits
off generating a band of resonances.
0-18
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THEORY OF FINITE PERIODIC SYSTEMS: GENERAL . . . PHYSICAL REVIEW B65 205120
nance atE51.242 eV, in Fig. 19~a!, is redisplayed in Fig.
19~b!. A strong suppression inT1,1 is accompanied by a reso
nant behavior ofT1,2. This resonance has been normaliz
and can be fitted with a Lorenzian function, as is well kno
in scattering theory. The lifetime of the quasistationary re
nant states, given by the resonance width, becomes larg
the number of cells,n, increases. Simultaneously, asn in-
creases the resonance splits off generating, due to phas
herence phenomena, a band of resonances@see the low-
energy region of Fig. 19~c!#.

FIG. 20. Two-channel system and the coupling effects on
transmission coefficientsTi j above the channel thresholds and f
different number of cells,n. As in the previous figure, interestin
resonant couplings can be seen. In~c!, at E54.5 eV, a complete
suppression in the ‘‘elastic’’ transmission coefficientTii is accom-
panied by strong resonances in the transition coefficientsTi j .
20512
-
as

co-

The system whose transmission coefficients have b
plotted in Fig. 20 contains planes ofrepulsive d-scatterer
centers. Although at very small energies (,Eth1 ,Eth2) we
also find a channel-coupling resonance~indicated withT1,2),
the transmission probability from channel 1 to channe
becomes larger than for the attractived ’s above the energy
thresholdsEth1 andEth2. For the parameter values chosen
this caseT1,2 is comparable in magnitude withT1,1 andT2,2.
In some cases strong suppressions in the transmission
ficientsT1,1 andT2,2 are observed, with no influence on th
total transmission probability or conductanceGn5Tr tntn

† .
For this reason, it is clear that this type of effects will rema
unobserved, at least while the experimental techniques
not efficiently discriminate one channel from another. B
sides the band distortion, other significant features are
apparent. At the incoming particle energy of 4.6 eV in F
20~c!, the transition coefficientsT1,2 and T2,1 contribute to
the largest value of the conductanceG3, while T1,15T2,2
becomes zero. In Fig. 20~a!, the transfer-matrix trace ha
been also plotted and, as in the one propagating mode ca
indicates the regions of allowed and forbidden energies.

It is interesting to notice that the channel-mixing effec
measured by the relative size ofT1,2, become larger as the
system’s sizeL5nlc increases.

In Figs. 21 the transmission coefficientsTi , j are plotted
for N53. In these figures we have consideredl c516 Å, g
50.4 keV, andx15y151 ~with wx5wy524 Å and Nn

5Nm56). A physically interesting property that can be ve
clearly observed is thereturn effect, occurring when a par-
ticle comes out in the same channel of the incoming one
having passed, at least once, through another propaga
mode. Because of this effect, the band structure ofTi ,i is
modified in the energy regions where the allowed ene
band of channelk coincides with the forbidden energy ban

e

FIG. 21. Three propagating channels and their transmission
efficients. In this graphs a small coupling allows one to recogn
the uncoupled band structure for channels 1, 2, and 3. The cha
coupling induces transitions from channeli to channelj Þ i even if
the energy lies in the gap of one of them.
0-19
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of channel i and whenever the transition probabilityTi ,k

takes non-negligible values. Consider, for example,
graphs forT1,1, T1,2, and T22. The transition probability
T1,2 is different from zero in the energy regions correspon
ing to allowed bands of bothT1,1 and T2,2. If we observe
now the transmission coefficientT2,2 in the gap between the
third and fourth bands, there is a small probability for t
particle to start and finish in the same channel 2 for ener
in the allowed band of channel 1 and the forbidden energ
of channel 2. This is possible if the particle enters in chan
2, passes to channel 1, and, before reaching the end o
superlattice, comes back to channel 2. In these graphs we
also see thatT11 andT22 do not reach the maximum value o
1 in their allowed energy bands.

If we observe the transmission coefficients in Fig. 22,
return effect is much more pronounced because the trans
coefficientsTi , j take values comparable with those ofTi ,i .
This effect is apparent in, say,T2,2 for energies around 1, 0

FIG. 22. Strong coupling of three propagating channels and
effects in their transmission coefficients. All the transmission co
ficients, except the total transmission coefficient or conductance
strongly modified especially for energies in the third band. Look
carefully at the energy region between 2 and 2.5 eV we can see
example, that a particle coming in channel 3 leaves also in cha
3 after having passed through the other two channels.
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and 2.2 eV, corresponding to the second and third ene
bands. At these energies, the particle starts in channel 3
finishes in the same channel but passing through chann
or, perhaps, also through channel 1. This type of experim
tal information, even for the two-channel problems, is not
available. We expect that such quantities will be measu
soon, because they will give more insight into the tunnel
mechanism and on the way the flux of certain kinds of q
siparticles moves from one channel to another. It is wo
mentioning that this effect depends also on the superlat
size and layers widths. Some calculations and also app
tions are in progress.

The channel coupling parametersG i j are important quan-
tities that are strongly dependent on the periodic poten
ability to induce flux interchange between the various pro
gating modes. In the model considered here, they can ea
be calculated for any configurations ofd ’s. For different dis-
tributions, distinct and interesting band-mixing effects a
predicted. In other kind of problems—say, spin-depend
problems—incoming particles may emerge on the other s
with their spin reversed.36 By the same token, heavy hole
transform into light holes. The uncoupled-channel limit res
nances of thei th mode may be present or absent when
coupling is turned on. Resonances associated with the
coupledkth ~with kÞ i , j ) channel can be present in (Tn) i j .
Expected and nonexpected phenomena of suppres
broadening, enhancement, and apparentgeneration of new
transmission resonances, produced by interchannel c
plings, are of primary importance and offer the possibility
modeling and predicting novel tunneling effects and interf
ence phenomena.

VI. CONCLUSIONS

Theoretical developments and various physical proper
of finite periodic systems have been discussed from the p
of view of the transfer matrix and the scattering theory.
this theory, alternative to the current solid state theory,
principal features of the real periodic sytems—finiteness
periodicity—are fully incorporated without any need fo
Bloch functions and reciprocal space. While in the stand
theory one works, by construction, in the continuous sp
trum limit ~of infinite systems! in this approach we have
complete control of the system’s size and the entire ph
coherence phenomena. As a consequence, one can easi
termine the fundamental phase interference effects as we
the discrete character of the energy spectrum, emblemat
finite systems. Using simple, algebraic methods, univer
extremely simple and compact expressions for globaln -cell
quantities, valid for any realization of the potential functio
have been rigorously and directly obtained.

The scattering approach, which up until now has succe
fully dealt with transport properties of disordered and chao
structures, used properly, can also give information on
innards of finite periodic systems. From the transmission
efficients we get information on the band structure and, e
more, on the intraband structure and on the resonant e
gies. This information opened up the possibility of evalu

e
f-
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for
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THEORY OF FINITE PERIODIC SYSTEMS: GENERAL . . . PHYSICAL REVIEW B65 205120
ing and describing extended, resonant, and localized s
inside the periodic systems. For multichannel systems,
have also shown that it is possible to evaluate resonant c
nel couplings and to get insight into the particle’s excursio
through the space of open and evanescent channels.

From the transfer-matrix combination propertyMn
5MMn21 we deduced recurrence relations for the subma
cesan andbn . These relations were used both to derive n
formulas for global scattering amplitudes and quantum pr
erties and to deducematrix recurrence relationswhose solu-
tions are the noncommutative polynomialspN,n . These, in
the 1D one-channel limit, are the well-known Chebysh
polynomials of the second kind.

A highly peculiar and significant property of the gene
expressions describing the physics ofn-cell system with an
arbitrary number of propagating modesN and arbitrary
single-cell potential function is the consistent presence of
two fundamental quantum properties: the tunneling eff
and the phase coherence. The tunneling process is gene
expressed by the single-cell matrix elements or the sin
cell scattering amplitudes. The multiple reflection and int
ference phenomena, occurring alongn repetitions of the
single cell and between the various channels, is describe
these formulas by means of the polynomialspN,n . In this
sense, the theory presented in this paper not only genera
the one-channel descriptions to provide extremely sim
formulas for the transmission coefficients ofn-layer
N-channel systems, but also gives more general, simple,
cise descriptions of some fundamental qualitative propert
The position and widths of the allowed bands are given
the trace of the single-cell transfer matrix, the tunneling re
nances by the zeros of the polynomialspN,n .

Some few-channelexamples have been considered. W
started by studying nonspecific properties common to all
one-channel finite periodic systems. To this purpose we u
the Bargmann parameters to express the physical quant
Based on this analysis we could make clear that the ph
coherence phenomena are responsible for the universal
structure behavior. Specific examples were also conside
and the square- andd-barrier potentials were frequently use
to illustrate and perform explicit calculations. We ha
shown that in the limitn→`, the square-barrier system
obviously the Kronig-Penney model. Band structure tailor
has also been discussed. Playing with a few potential par
eters, interesting effects and some well-known proper
were found both for donorlike and acceptorlike ‘‘impurities
or topological defects. We have shown that easier impu
calculations can be done using this method and that the
lated impurity levels or minibands in the energy gaps can
located almost at will. We also applied our method
multilayer quasilinear optical systems and quantum dot
rays ~not reported here! with equal feasibility and success.

A short discussion of simple but illustrativetwo- and
three-channelsystems was also presented. To illustrate
analysis of this type of system, we considered a soluble m
tichannel superlaticeBABAB. . . ABAB, where mono-
atomic layersA alternate with thicker semiconductor laye
B. For attractived potentials, faithful resonances appear b
cause of the coupling between open and evanescent s
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For repulsived potentials, an interestingreturn effect is
clearly recognized when a particle comes out in the sa
channel as the incoming one but having passed, at least o
through another propagating mode. Many other propert
such as resonance broadenings, suppressions, and ch
mixings, are observed in general. The lateral dimensionswx ,
wy , the cell lengthl c , the number ofd ’s per plane, and their
distribution have important consequences in the transmis
coefficients.

In conclusion we presented here an alternative and c
venient method to study some properties in solid-st
physics.
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APPENDIX A: THE TRANSFER MATRIX IN THE
KRONIG-PENNEY MODEL

For the benefit of those who are not familiar with th
transfer-matrix method, let us consider a simple example,
finite Kronig-Penney model, and calculate the single-c
transfer matrix. A sectionally constant potential profile of th
type might correspond to the conduction- or valence-ba
edge of a superlattice (AB)n, in which case the effective
masses in the alternating layer should be considered. In
case, the current or flux conservation requirement mus
considered. In the valley regionA of this system, the wave
function is

cA~z!5aAeikz1bAe2 ikz[aAwW ~z!1bAwQ ~z!, ~A1!

wherek5A(2mA /\2)E, while in the barrier regionsB, with
k5A(2mB /\2)(V02E) for E,V0, the wave function is

cB~z!5aBekz1bBe2kz[aBw1~z!1bBw2~z!. ~A2!

The continuity conditions at the interface pointszl and zr
5zl1b0, at the left- and right-hand sides of barrierB, can be
written as

fB~zl
1!5S aBekzl

1

bBe2kzl
1D

5
1

2k S k1 ik k2 ik

k2 ik k1 ik D S aAeikzl
2

bAe2 ikzl
2D

[Mi0~zl
1 ,zl

2!fA~zl
2! ~A3!

and
0-21
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fA~zr
1!5S aAeikzr

1

bAe2 ikzr
1D 5

1

2k S k2 ik k1 ik

k1 ik k2 ik D S aBekzr
2

bBe2kzr
2D

[M0i~zr
1 ,zr

2!fB~zr
2!. ~A4!

It is not difficult to show that the current conservation r
quirements

j ~zl
1!5 j ~zl

2!, j ~zr
1!5 j ~zr

2!

imply the conditions

Mi0
† S 0 1

21 0D Mi052
ikmB

kmA
S 1 0

0 21D ,

M0i
† S 1 0

0 21D M0i52
ikmA

kmB
S 0 1

21 0D .

The transfer matrices here connect the state vectors in
outside with the state vectors inside the square-barrier po
tial. State vectors at any two points of a constant poten
region differ in their phases and are also related by a tran
matrix. Forza andza8 in the valley regionA, we have

fA~za8!5S eik(za82za) 0

0 e2 ik(za82za)D fA~za!

5MA~za8 ,za!fA~za!, ~A5!

and forzb andzb8 in the barrier region, we have
ss

r
y
f

lle

20512
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n-
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fB~zb8!5S ek(zb82zb) 0

0 e2k(zb82zb)D fB~zb!

5MB~zb8 ,zb!fB~zb!. ~A6!

Using the multiplicative property, it is possible to obtain th
transfer matrix relating any two points of the superlattic
The state vectors at anyza ~in the valleyA) and zb ~in the
neighbor barrier regionB) are related by

fB~zb!5MB~zb ,zl
1!Mi0~zl

1 ,zl
2!MA~zl

2 ,za!fA~za!

5Mba~zb ,za!fA~za!. ~A7!

The current conservation requirement

j ~za!5 j ~zb!

implies the condition

Mba
† S 1 0

0 21D Mba52
ikmB

kmA
S 0 1

21 0D . ~A8!

In the same way, the matrix relating the state vect
fA(zl

2) and fA(zr
15zl

21b0), at the left- and right-hand
sides of the square barrier, is obtained from

Mb~zl
21b0 ,zl

2!5M0i~zr
1 ,zr

2!MB~zr
2 ,zl

1!Mi0~zl
1 ,zl

2!.

Therefore
Mb~zl
21b0 ,zl

2!5S coshkb01 i
k22k2

2kk
sinhkb0 2 i

k21k2

2kk
sinhkb0

i
k21k2

2kk
sinhkb0 coshkb02 i

k22k2

2kk
sinhkb0

D . ~A9!
ke

the
e-
1D
It is easy to show that the current conservationj (zl
2)

5 j (zr
1) leads to the well-known FC requirement

Mb
†S 1 0

0 21D Mb5S 1 0

0 21D . ~A10!

APPENDIX B: THE BARGMANN REPRESENTATION

The transfer matrix of the orthogonal universality cla
M0 belongs to the symplectic Sp(2N,C) group, with (2N2

1N) free parameters, while the transfer matrix in the unita
universality class Mu belongs to the pseudounitar
psU(2N,C) group, with (4N21N) free parameters. Most o
the transfer matrices appearing in the literature belong
these groups.

Sometimes, it may beconvenient, but it is not essential for
this theory, to express the transfer matrices in the so-ca
Bargmann representation20
y

to

d

M05S u 0

0 u* D S coshx sinhx

sinhx coshx
D S v 0

0 v* D ~B1!

and

Mu5S u1 0

0 u2
D S coshx sinhx

sinhx coshx
D S v1 0

0 v2
D , ~B2!

with u’s and v ’s unitary matrices andx diagonal and posi-
tive. In this representation, the transfer-matrix blocks ta
simple functional forms. In the orthogonal case we have

a5u coshxv†,

b5u sinhxvT. ~B3!

The Bargmann parameters are well-defined functions of
energyE and other potential parameters in a way which d
pends on the particular physical system. For the familiar
0-22
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Kronig-Penney model shown in Fig. 3, the Bargmann para
etersx andf[fu2fv are given by

x5cosh21F11
v0

2

e~e2v0!
sinh2SA2mb* ~e2v0!

\
D 1/2G

~B4!

and

f5
A2mv* e

\ S 11
a0

b0
D

1tan21F 2e2v0

Ae~e2v0!
tanhSA2mb* ~e2v0!

\
D G . ~B5!

When the square-barrier potential is due to alternating se
conductor layers, we havemv* and mb* as the effective
masses in the valley and barrier, respectively. In the prev
formulas, we have considered also the parameterse5Eb0

2

andv05V0b0
2. We shall usex andf to discuss the relation

between the Chebyshev polynomials and the resonant tr
mission and reflection interference phenomena, keeping
analysis as general as possible. The Bargmann param
can also be used to make clear some potential-indepen
features such as the deep relation between the band stru
and the phase coherence phenomena in periodic systems
cussed in Sec. V.

APPENDIX C: RELATIONS BETWEEN THE SCATTERING
AND THE TRANSFER MATRIX

Explicit relations between the transfer and scattering m
trix elements are known; see, for example, Ref. 22. For s
tering processes like the one sketched in Fig. 2, the co
cients r, t, r 8, and t8 are the reflection and transmissio
amplitudes corresponding to incident particles coming fr
the left- and right-hand sides, respectively. The scatte
matrix S, which relates the incident amplitudesa andd with
the outgoing amplitudesb5ra1t8d and c5ta1r 8d, is
written as

S5S r t 8

t r 8
D . ~C1!

Let us consider the transfer matrix of the unitary universa
classMu . For TRI systems, we have to takeg5b* and d
5a* , and based on the scattering and transfer-matrix d
nitions, one easily obtains the following equations:

t2a2br 50,

r 82bt850,

g1dr 50,

12dt850, ~C2!

whose solutions@with the dagger (†) meaning the transpo
conjugate# are22
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r 52d21g52v2
†~ tanhx!v1 , ~C3!

t5~a†!215u1~coshx!21v1 , ~C4!

t85d215v2
†~coshx!21u2

† , ~C5!

r 85bd215u1~ tanhx!u2
† . ~C6!

Thus, the transfer matrix of the unitary universality class c
be written as

Mu5S ~ t†!21 r 8~ t8!21

2~ t8!21r ~ t8!21 D , ~C7!

while in the orthogonal universality class it takes the form

M05S ~ t†!21 r * ~ tT!21

~ tT!21r ~ tT!21 D . ~C8!

The explicit parametrizations appearing on the right-ha
sides of Eqs.~C3!–~C6! correspond to Bargmann’s represe
tation.

APPENDIX D: MRR AND THE CAYLEY-HAMILTON
THEOREM

It is not difficult to recognize that thenoncommutative
polynomial recurrence relation

pn
( i )1z i pn21

( i ) 1h i pn22
( i ) 50

for n>1 and i 51,2, ~D1!

wherez152(b21ab1d) andh15(db21ab2gb) are the
matrix coefficients for the unitary class, andz25
2(b21ab1a* ) and h25(a* b21ab2b* b) the matrix
coefficients for the orthogonal class, transforms into thesca-
lar recurrence relation

bn12N
i , j 1g1bn12N21

i , j 1•••1g2N21bn11
i , j 1g2Nbn

i , j50,

; i , j and nÞ0 ~D2!

and similar relations foram
i , j , gm

i , j , anddm
i , j . Equation~D1! is

the Cayley-Hamilton theorem forM.37 The coefficientsgm
are precisely those of the characteristic polynomial ofM,
defined by Leverrier’s algorithm,38 being g152Tr M and
g2N5detM . Taking into account that the recurrence relati
holds irrespectively of the indicesi , j , we write

pn12N1g1pn12N211•••1g2N21pn111g2Npn50,
~D3!

with the initial conditionsp05I N , for p5a,d, pN
(1) , pN

(2) ,
or p050, for p5b,g. Since pN,m

(1) and pN,m
(2) are formally

equal, we have to deal with only one set of polynomia
which satisfy the relation

pN,n12N1g1pN,n12N211•••1g2N21pN,n111g2NpN,n50

for n>0. ~D4!
0-23
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Notice that the same equation is valid in the orthogonal u
versality class, differing only in the explicit form of the co
efficients gm . The polynomialspN,m are in some respec
universal quantities. Solving forpn , we will be ready to
determinean , bn , gn , anddn , and subsequently to evalu
ate the superlattice physical quantities of interest
multilayer systems. This is one of our main goals.

APPENDIX E: THE CHEBYSHEV
AND THE NONCOMMUTATIVE POLYNOMIALS

1. one-channel case

To introduce the procedure to solve the most general c
using the well-known generating function method and to
troduce a notation we start by recalling the well-know
Chebyshev relation

pn1g1pn211pn2250, ~E1!

with p2150, p051, and

g152Tr M . ~E2!

Schematically, we can proceed as follows.
~i! Developing the generating functiong(l)5(11g1l

1g2l2)21 aroundl50, one has

1

11g1l1g2l2
5q01q1l1q2l21q3l31•••, ~E3!

where

q051, ~E4!

q11g1q050, ~E5!

and

qn121g1qn111g2qn50 for n>0. ~E6!

All this is compatible with Eq.~D1!. Thus,qn can be iden-
tified with pn .

~ii ! Any combination like

qn5s1l1
n1s2l2

n , ~E7!

wherel1 andl2 are the eigenvalues ofM, is also a solution
of the recurrence relation. To fulfill Eqs.~E6! and ~E7!, s1
ands2 should satisfy the set of equations

s11s251, ~E8!

s1~l11g1!1s2~l21g1!50, ~E9!

the solutions of which are~recall that g152Tr M52l1
2l2)

s15
l1

l22l1
, s25

l2

l12l2
. ~E10!

Thus,
20512
i-
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qn5
l1

n112l2
n11

l22l1
5pn . ~E11!

This is the well-known Chebyshev polynomial of the seco
kind in the eigenvalue representation.

2. N-channel case

For N>2, we have the MRR

pN,n52zpN,n212hpN,n22 , ~E12!

where z52(b21ab1d) and h5(db21ab2gb). This
seems complicated but it is a solvable problem. As m
tioned before this three-term relation transforms into the s
lar recurrence relation~E1! with 2N11 terms.

Without loss of generality and assuming thatl i2l jÞ0,
; i and j, we can consider the generating function

Q~l!5
I N

11g1l1g2l21•••g2Nl2N

5qN,01qN,1l1qN,2l
21•••, ~E13!

whose coefficientsqN,i satisfy the following 2N conditions:

qN,05I N , ~E14!

qN,11g1qN,050, ~E15!

qN,21g1qN,11g2qN,050, ~E16!

A

and the recurrence relation

qN,n12N1g1qN,n12N211•••1g2N21qN,n111g2NqN,n

50 for n>0. ~E17!

Except for the first equation and the last recurrence relat
these conditions are not fully compatible with the mat
recurrence relation~E12!. For example, recalling thatpN,21
50, we have from Eq.~E12!

pN,11zpN,050 with zÞg1 .

Thus, the generating function has to be modified.21 Before
doing that, we shall continue deriving the coefficientsqN,n ,
because at the end the general solution depends also on
quantities. Since theqN,n are multiples ofI N , we shall work
as if they were scalar quantities and, again, to keep a sim
notation we shall also drop the subindexN, which will not
appear in our expressions unless the number of chan
needs to be specified. If we take the combination

qn5s1l1
n1s2l2

n1•••1s2Nl2N
n ~E18!

and use the previous conditions, the coefficientssi can be
determined by solving the set of equations

(
i 51

2N

dkisi5dk,0 , k50,1, . . . ,2N21, ~E19!
0-24
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where

dki5l i
k1g1l i

k211•••1gk21l i1gk . ~E20!

The coefficientsgm are the well-known symmetric function

gm5~2 !m (
l 1, l 2,•••, l m

2N

l l 1
l l 2

•••l l m
, g051. ~E21!

It is easy to verify that

si5
l i

2N21

)
j Þ i

2N

~l i2l j !

~E22!

and, thus,

qn5(
i 51

2N
l i

2N1n21

)
j Þ i

2N

~l i2l j !

I N . ~E23!

To fulfill the MRR, we have to consider a generating fun
tion like

F~l!5~ I 1r1l1r2l21•••1r2N21l2N21!Q~l!

[ (
m50

pmlm, ~E24!

with r i areN3N matrices and
,
-

-

,

s
,
.

J
.

20512
-

pm55 (
k50

m

rkqm2k when m<2N21,

(
k50

2N21

rkqm2k when m>2N W0X.

~E25!

These matrices satisfy the MRR if

r15p11g1p0 , ~E26!

r25p21g1p11g2p0 , ~E27!

r2N215p2N211g1p2N221•••1g2N21p0 ; ~E28!

i.e., the polynomialspm in Eq. ~E25! satisfy the MRR when

rk5(
l 50

k

plgk2 l , r051. ~E29!

Replacing this, we have finally

pN,m5 (
k50

m

(
l 50

k

pN,lgk2 lqm2k for m,2N ~E30!

and

pN,m5 (
k50

2N21

(
l 50

k

pN,lgk2 lqm2k for m>2N. ~E31!

These are precisely the polynomialspN,m we are looking for.
.
.
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11M. U. Erdoğan, K. W. Kim, and M.A. Stroscio, Appl. Phys. Lett
62, 1423 ~1992!; L. G. Gerchikov, B. D. Oskotsky, and A. V
Subashiev, Phys. Rev. B50, 15 416~1994!.

12P. Pereyra~unpublished!.
13D. J. Griffiths and N. F. Taussing, Am. J. Phys.60, 883 ~1992!.
14T. H. Kolatas and A. R. Lee, Eur. Phys. J. B12, 275 ~1991!.
15H. W. Lee, A. Zysnarsky, and P. Kerr, Am. J. Phys.57, 729

~1989!.
16D. Kiang, Am. J. Phys.42, 785 ~1974!.
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