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Conductance an optical response in the
scattering approach

The transport processes and propagation of classical and quantum waves, the
relevant physical quantities may conveniently be described, depending on the
nature of the specific physical process, in terms of either the scattering or the
transfer matrix elements. S-matrices, which relate the incoming wave functions
with the outgoing ones, have been widely used to describe electromagnetic and
elastic waves; they are also valuable for a broad class of problems in low and
high energy physics. The transfer matrices M, which relate the wave vector on
one side of the system with that on the other, are widely used in different fields
of physics and engineering. In solid state physics, transfer-matrix methods
have been extensively applied to study electron energy bands in ordered and
disordered systems-6 as well as to establish general criteria for the existence
of energy gaps in the spectrum of arbitrary one-dimensional atomic chains,
especially in connection with delta- function potentials.7-9 In Landauers scat-
tering approach to electronic transport processes, con- ductance properties of
mesoscopic multichannel disordered conductors are analyzed through trans-
fer matrix ensembles.-4

We have already mentioned the relevance of the Landauer conductance
formula in the scattering approach to electronic transport [?]. The formal
representation of resistance and conductance in terms of transmission and re-
flection coefficients has been a propitious idea in the quantum description of
the conduction properties of ordered and disordered samples. The astonish-
ing simplicity of the Landauer formula and its profound implications on the
description of a physical phenomenon that was thought extremely complex,
lead to careful derivations where not only the physical conditions of applica-
bility were search, punctilious derivations were also accomplished. Derivations
where the role of measuring probes and charge carrier reservoirs, as well as
differences between electrostatic and electrochemical potentials, were taken
into account [?, ?, ?, ?]. We will show here that the simple one-channel and
multichannel Landauer formulas deserve also simple derivations. We will see
that if one follows the simple and sensitive reasoning that guided Rolf Lan-
dauer to conceive the way in which a piece of an electronic circuit, the sample
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46 4 Conductance an optical response in the scattering approach

or potential region, behaves or modifies the transport phenomena, one can
easily derive the well known Landauer formulas.

4.0.1 The one-channel 1D Landauer conductance. For phase
coherent systems

In 1957, Rolf Landauer suggested to view the conduction in a 1D system as
a transmission problem such that

G =
e2

πh̄

T

R
. (4.1)

The eventual divergency of the conductance, when the transmission coefficient
T → 1, was largely discussed and new formulas free of divergencies were
search. The physical connection between G and T was to some extent well
accepted, but the presence or not of the reflection coefficient has been finally
ascribed to the probes position, in the leads or the reservoir, when the sample
conductance is measured.

Let us suppose that we have the system shown in figure ?? where a con-
ducting sample is connected to leads and the incident particles come only from
the left hand side. The partial elastic reflection and transmission of particles
by the scattering sample leads, in general, to different particle densities at the
left and right of the system. At the left, for samples at low temperature where
the phase coherence is kept, i.e. for non disordered samples, the particle’s
density is

nl = |ϕi + ϕr|2 = |1 + r|2|ϕi|2 =
(
1 + |r|2 + 2<e[r]

)|ϕi|2 (4.2)

while the particle’s density at the right is

nr = |ϕt|2 = |t|2|ϕi|2. (4.3)

The induced density difference is then

δn = nl − nr ==
(
1 + |r|2 − |t|2 + 2ξ

)|ϕi|2 = 2
(
R + ξ

)|ϕi|2 (4.4)

where we have used that R+T = 1 and defined ξ = <e[r]. As the temperature
grows or the sample disordered grows, and the phase coherence is lost, ξ → 0.
Since

δn =
dn

dE
δE = D(E)δE (4.5)

an electrostatic potential difference (δE = eδV ) given by

δV =
2
(
R + ξ

)|ϕi|2
eD(E)

(4.6)
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4 Conductance an optical response in the scattering approach 47

is induced. Here the density of states is D(E) = 1/πh̄vi. We known that in a
system like this, the current densities at the left and right are the same. The
current density on the right is

jt = |ϕt|2 h̄ki

m
= |t|2|ϕi|2viẑ (4.7)

Thus, the electric current is

I = eT |ϕi|2vi (4.8)

Using these results one easily obtains the conductance

G =
I

δV
=

e2

2πh̄

T

R + ξ
=

e2

2πh̄

T

R

(
1− ξ

R
+ ...

)
(4.9)

Which leading term is precisely the one channel 1D Landauer conductance in
the case of no spin degeneration.

Let us now suppose the N -channel case where r and t are N×N matrices.
We can in this case start obtaining the electric current I. Because of flux
conservation it is the same at the left and the right side of the scattering
sample. The current density, in channel a, on the right hand side is

jla(z) =
∑

b,c

ih̄

2m

(
ϕict

T
ca

∂

∂z
t∗abϕ

∗
ib − ϕ∗ict

†
ca

∂

∂z
tabϕib

)
ẑ (4.10)

jla(z) =
h̄

2m

∑

b,c

kb

(
ϕict

T
cat∗abϕ

∗
ib + ϕ∗ict

†
catabϕib

)
(4.11)

it is easy to show that the first and the second term are equal, thus

jla(z) =
h̄

m

∑

b,c

kbϕicϕ
∗
ibtact

∗
ab (4.12)

If we integrate, taking into account that the wave functions in the leads satisfy
the normalization condition

∫
ϕ∗ic(z)ϕib(z)dz =

δbc

h̄kb/m
, (4.13)

the current in channel a takes the form

Ia = e
∑

b,c

δcbtact
∗
ab = e

∑

b

tabt
∗
ab (4.14)

and the total current becomes

I = e
∑

ab

tabt
∗
ab = eTr tt† (4.15)
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48 4 Conductance an optical response in the scattering approach

On the other hand we can evaluate the induced electrostatic potential from
the particle densities difference. These densities at the left and right sides are

nla(z) =
∑

b,c

ϕ∗ic(IN + r)†ca(IN + r)abϕib (4.16)

and

nra(z) =
∑

b,c

ϕ∗ict
†
catabϕib (4.17)

After integration on z the induced particles density difference, in channel a,
takes the form

δna = nla − nra =
∑

b

1
vb

[
(IN + r)ab(IN + r)†ba − tabt

†
ba

]
(4.18)

Again, this change in the particle density can be written as

δna =
dna

dE
δE = Da(E)eδV =

1
πh̄va

eδV, (4.19)

and the total particle density difference will be

∑
a

δna =
∑

a

1
πh̄va

eδV. (4.20)

We can then write

δV =
πh̄

∑
ab v−1

b

[
(IN + r)ab(IN + r)†ba − tabt

†
ba

]

e
∑

a v−1
a

(4.21)

which in a more compact form is

δV =
πh̄

∑
b 2 v−1

b

(
Rbb + <e[rb]

)

e
∑

a v−1
a

(4.22)

where Rbb =
∑

a r∗barab = 1− Tbb. Since <e[rb] ' O(1/N) we have

δV =
πh̄

∑
b 2 v−1

b Rbb

e
∑

a v−1
a

(4.23)

Therefore, we have the well known [?,?] multichannel conductance

G =
e2

2 πh̄

Tr tt†
∑

a v−1
a∑

b v−1
b Rbb

(4.24)

A factor 2 must be added when the system is spin degenerated.
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