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ABSTRACT

We report the discovery of two types of stability rings in the control parameter space of a vertical-cavity surface-emitting semiconductor laser.
Stability rings are closed parameter paths in the laser control space. Inside such rings, laser stability thrives even in the presence of small
parameter fluctuations. Stability rings were also found in rather distinct contexts, namely, in the way that cancerous, normal, and effector
cells interact under ionizing radiation and in oscillations of an electronic circuit with a junction-gate field-effect transistor (JFET) diode. We
argue that stability-enhancing rings are generic structures present in the control parameter space of many complex systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0066877

Recently, high-performance computer clusters combined with

reliable numerical methods have been revealing a plethora of

intricate structures in stability diagrams of several complex non-

linear oscillators. This paper reports two types of stability rings

observed in three rather unalike dynamical systems, namely, in

the control parameter space of a state-of-the-art model of a

vertical-cavity surface-emitting semiconductor laser, in a model

of the dynamics of cancerous cells subjected to ionizing radia-

tion, and in the inductor-based Hartley electronic circuit with a

JFET and the usual tapped coil. Here, selected control parame-

ter planes of these three complex oscillators are shown to display

rings, i.e., closed parameter paths, formed by periodic oscillations

along which the number of spikes per period remains constant or

not. The existence of such stability rings cannot be predicted the-

oretically due to the total absence of an adequate framework to

solve analytically coupled nonlinear differential equations. How-

ever, stability rings should not be difficult to validate experimen-

tally. We believe stability rings to be generic structures present

in the control parameter space of many other complex systems

underlying important applications.

I. INTRODUCTION

A key aspect of lasers design and optimization is the definition
of their operational control parameters. In general, design and
optimization are hard to perform experimentally because of the
need for searching adequate lasing conditions by tuning several
material properties simultaneously over wide parameter ranges, as
well as laser cavity geometry.1–3 However, high-performance and
high-throughput computer clusters offer an efficient alternative
to explore wide parameter ranges of interest. Such clusters allow
extended numerical simulations, thanks to the availability of well
tested and reliable numerical methods. Numerical simulations are
considerably less expensive alternatives that are more time-effective
than systematic and arduous experimental laboratory searches for
suitable material properties.

This paper reports remarkable structures, namely, two types of
stability rings, observed in the control parameter space of a vertical-
cavity surface-emitting semiconductor laser (VCSEL). As illustrated
by Figs. 1, 2, 3, stability rings are closed parameter paths, loops in the
control space, characterized by periodic oscillations. Along closed
paths, oscillations display a constant number of spikes per period
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and are monocolored circuits like any of the paths in Fig. 1. Alter-
natively, loops may display multicolored segments, like in Fig. 3(c),
signaling that the number of spikes is not constant along the closed
path. Apart from their theoretical novelty, such rings are particularly
interesting because, as described below, laser stability thrives inside
such rings, even in the presence of small parameter fluctuations.

We have also been able to detect similar stability rings in rather
distinct complex systems and, therefore, believe that they might be
common features of a large class of nonlinear oscillators. In addi-
tion to the semiconductor laser, here we also report stability rings
detected in a realistic model, based on clinical data,4 describing the
dynamics of cancerous cells5 and to which the effect of ionizing radi-
ation was included6–11 and in a JFET-based electronic circuit used in
modern communication systems.12,13

We begin by describing in detail the stability rings found for
the VCSEL. We then corroborate the properties described for the
VCSEL rings in both aforementioned examples. These additional
examples are just intended to show that rings are not fragile or hard
to find in other typical nonlinear dynamical systems.

II. RINGS IN A SEMICONDUCTOR LASER

A VCSEL has several advantages over edge-emitting lasers and
this is the reason for the many recent experimental14,15 and theo-
retical studies16,17 about them. For instance, Refs. 14–17 reported
on the interplay between polarization switching and bifurcations in
VCSELs when subjected to orthogonal optical injection. They found
qualitatively different bifurcation scenarios leading to polarization
switching in the plane of the injection parameters, namely, the fre-
quency detuning and injection strength plane. A Hopf bifurcation
mechanism on the two-polarization-mode solution determines the
injection-locking boundaries and influences polarization switching
induced by optical injection. A torus bifurcation emerging from
a two linearly polarized (LP) mode time-periodic dynamics was
reported to arise before polarization switching and injection locking
appear. This corresponds to an interesting combination of relax-
ation oscillation dynamics in the x-LP mode together with wave
mixing dynamics in the injected y-LP mode. In agreement with
experiments, Gatare et al.14–16 described a period-doubling route to
chaos that involves both VCSEL orthogonal LP modes.

All aforementioned remarkable features motivated us to per-
form a detailed investigation on the VCSEL state-of-the-art model
considered in Ref. 16, namely,

dEx

dt
= κ(1 + iα)(NEx + inEy − Ex)

− i(γp + 1ω)Ex − γaEx, (1)

dEy

dt
= κ(1 + iα)(NEy − inEx − Ey)

+ i(γp − 1ω)Ey + γaEy + κinjEinj, (2)

dN

dt
= −γe(1 + A)N + γeµ − iγeBn, (3)

dn

dt
= −γsn − γeAn − iγeBN, (4)

where A = |Ex|
2 + |Ey|

2, B = EyE
∗
x − ExE

∗
y , and Ex and Ey repre-

sent the slowly varying components of the linearly polarized electric
fields in, respectively, the x- and y-polarization directions. The
variable N accounts for the total population inversion between con-
duction and valence bands, while n accounts for the difference in the
carrier numbers of the two sublevels with opposite spins.

The parameters are defined as follows: κ is the optical field
decay rate, γe is the decay rate of N, γs is the spin-flip relaxation
rate, γα the linear dichroism, γp the linear birefringence, α is the
usual linewidth enhancement factor, and µ is the normalized injec-
tion current (µ = 1 at threshold). An external optical injection is
modeled through the coupling coefficient κinj, the injected field
amplitude Einj, and 1ω which accounts for the frequency detun-
ing between master average and slave frequencies. The free-running
laser may exhibit two frequencies, which correspond to the frequen-
cies of the two linearly polarized modes. In the stationary case, the
frequencies of the two LP modes are given by ωx,y = ∓γp ± αγα .
The frequency detuning is the detuning between the master fre-
quency ωinj and a frequency ωth intermediate between that of the
x- and the y-LP modes ωth = (ωx + ωy)/2, i.e., 1ω = ωinj − ωth.
The intensities in x- and y-directions are Ix,y = |Ex,y|

2. In agree-
ment with experiments,14–17 we fix κ = 300 × 109, γp = 30 × 109,
γa = 0.5 × 109, γe = 1.0 × 109, γs = 50 × 109, αe = 3.0, µ = 1.5,
and κinj = 300 × 109 and study mode spiking as a function of the
injected field amplitude Einj and detuning 1ω.

We computed two types of stability diagrams: the standard
Lyapunov diagrams18 and the so-called isospike diagrams.19–29 Here,
isospike diagrams are constructed by painting each point of the con-
trol plane with colors reflecting the number of spikes (local maxima)
per period of the periodic oscillations and assigning some specific
color to record nonperiodic oscillations. Computationally, isospike
diagrams are a much simpler and less costly way to obtain all
the information of Lyapunov diagrams, plus a significant enhance-
ment: instead of lumping together all periodic oscillations into a
single-phase as Lyapunov diagrams do, isospike diagrams classify
oscillations by explicitly displaying the number of spikes per period
for every individual oscillation. For a survey on the computation of
stability diagrams, see Ref. 22. Figures 1–3 are examples of isospike
diagrams. Their chaotic phases were corroborated by computing the
magnitude of the Lyapunov exponents (not shown).

Each panel in Fig. 1 was obtained by solving the equations of
motion, Eqs. (1)–(4), on a grid of 2400 × 2400 = 5.76 × 106 equally
spaced points with the standard fourth-order Runge–Kutta integra-
tor with fixed-step h = 10−12. For each grid point, periodicities were
determined by inspecting the behavior of 4 × 106 timesteps after
discarding a transient of 2 × 106 steps. Integrations were started
from arbitrarily selected initial conditions, viz., Ex‖(0) = 0.2, Ex⊥

(0) = 0.4, Ey‖(0) = 0.3, Ey⊥(0) = 0.6, N(0) = 1.05, and n(0) = 0.05.
However, our results are relatively insensitive to the initial condi-
tions used.

Figure 1 shows isospike diagrams for the VCSEL, obtained by
counting spikes per period of Ey‖, the interesting component of the
electric field parallel to the polarization direction. In Fig. 1(a), it is
not difficult to recognize two types of closed circuits or rings: two
larger rings involving multiple circuits characterized by regular laser
modes with 12 and 16 spikes per period, and a smaller ring formed
by regular oscillations with 20 spikes per period, shown magnified in
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FIG. 1. Isospike diagrams showing stable structures for the VCSEL, illustrating
the two types of rings observed in the injected field amplitude Einj vs the frequency
detuning 1ω control space. Numbers refer to the number of spikes per period of
Ey‖. The white background marks parameters leading to nonperiodic (chaotic)

oscillations. Type-1 rings with three circuits in (a) and (b) involve two shrimps,30–35

while the type-2 ring in (c) does not. Panels (b) and (c) aremagnifications of details
in panel (a). See the text.

Figs. 1(b) and 1(c). Rings with multiple circuits are formed by inter-
connecting two shrimps30–35 while the single circuit ring in Fig. 1(c)
involves no shrimps. Shrimps are complex structures with four main
legs displaying infinite successions of spike-doubling cascades of

periodic oscillations in addition to the chaotic phases that follow
them.22,30–35 The presence or not of shrimps allows one to distinguish
both types of rings. The regular ring sequence, as well as the regu-
lar spikes proliferation of the rings, in Fig. 1 seem to suggest that the
type-2 ring in Fig. 1(c) could arise from a shrimp “annihilation” pro-
cess in which the multiple shrimp legs of the type-1 rings get closer
and closer until they eventually vanish, with the ring becoming a
type-2 ring. Next, we describe stability rings found in the cancer
model.

III. RINGS IN CANCEROUS CELLS MODEL

As a second example of a complex oscillator, we consider a
tumor growth model based on clinical data describing the dynamics
among cancerous, normal, and effector cell populations,4,5 subjected
to ionizing radiation acting on both malignant and normal cells.6–11

The model considered here is governed by the following nonlinearly
coupled equations:

dT

dt
= T (1 − T) − aTN − bTI − rT,

dN

dt
= cN (1 − N) − dTN − rN,

dI

dt
=

εIT

T + f
− gIT − hI,

(5)

where T, N, and I represent the tumor, normal, and effector cells
populations, respectively. The parameter r controls the applied
radiation, which inhibits both cancerous and healthy cells. The
other parameters are related to the growth rates and the exci-
tatory and inhibitory interactions among the different cells.4,10,11

Here, we fix the realistic values a = 1.0, b = 2.5, c = 0.6, ε = 4.5,
f = 1.0, h = 0.5, and r = 10−3 and arbitrarily selected initial con-
ditions (T, N, I) = (0.69, 0.30, 0.01), but are relatively insensitive to
changes. Integrations are done as before, with a timestep 1t = 0.05,
disregarding the first 6 × 106 steps as transient, and subsequently
using an equal amount of steps to determine the number of spikes.

Figure 2 shows a sequence of isospike stability diagrams for the
cancer model with radiation, Eq. (5), obtained by counting spikes
per period in the normal cells population. Figure 2(a) shows a global
view of the parameter space and a box locating a region of interest
here, shown magnified in Fig. 2(b). The pair of boxes in Fig. 2(b)
are magnified in Figs. 2(c) and 2(d), which contain type-1 and
type-2 rings, respectively. Thus, Fig. 2 unambiguously displays the
same two types of rings previously described for the VCSEL model
(Fig. 1).

IV. RINGS IN AN ELECTRONIC CIRCUIT

As a third complex oscillator, we consider the inductor-based
Hartley oscillator, the dual of the more familiar capacitor-based
Colpitts oscillator, both introduced in the 1910s, in the early days
of transatlantic radiotelephone communications and which are still
used in modern communication systems.12,13

Exceedingly complex oscillations generated by Hartley’s oscil-
lator are reported in several works.36–40 Following experiments in
Ref. 37, we consider Hartley’s oscillator with a JFET and the usual
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FIG. 2. Isospike stability diagrams showing type 1 and type 2 rings for the cells population model, Eq. (5), recorded in terms of the number of spikes per period of the active
normal cells, N. (a) Main view, (b) magnification of the box in (a). Panels (c) and (d) are magnifications of the boxes in (b). Black marks chaotic oscillations, colors represent
periodic oscillations, with the number of spikes per period shown by the colorbars. Note the profusion of many rather complex structures in these panels.

tapped coil.38 Neglecting the internal resistance of the coil and using
a high-frequency small-signal equivalent of the JFET, the equations
governing the circuit are37,38

CGS

dvGS

dt
= −i1 + i2 − iD − id,

CGD

dvGD

dt
= −i2 + id,

L1
di1

dt
= vGS,

L2
di2

dt
= −vGS + vGD + E,

(6)

where iD = IS

[

exp (vGS/VT) − 1
]

and

id =







0, if vGS ≤ Vc,
g(vGS − Vc)

2, if vGD ≤ Vc,
g(vGS − vGD)(vGS + vGD − 2Vc), if vGD ≥ Vc.

Following previous works,37,38 we fix CGS = 3.736 pF, CGD

= 3.35 pF, IS = 33.57 fA, Vc = −1.409 V, VT = 25 mV, E = 2.8 V,
g = 1.754 mAV2, L1 = 24.5 µH, and L2 = 4 µH and classify oscil-
lations for hundreds of millions of CGD and L2 values. As
before, integrations were started from arbitrary initial conditions
(CGS, CGD, L1, L2) = (−1.25, −2.25, 10−6, 10−6) but they are not crit-
ical. Using h = 0.005 as the timestep for integrations, we discarded
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FIG. 3. Isospike stability diagrams illustrating rings and spirals34 observed when counting spikes of vGD for the JFET-based electronic circuit. (a) Large view of a control
parameter plane. (b) Magnification of the box in (a) containing some rings. (c) Magnification of the smaller box in (b) showing a two-colors type-1 ring topologically similar
to the larger ring seen in Fig. 1(b) for the VCSEL and in Fig. 2(c) for the model of cancerous cells subjected to radiation. Black represents parameters leading to chaotic
oscillations and colors denote periodic oscillations, with the number of spikes per period encoded as indicated in the colorbars. Panels (a) and (b) contains several networks
of quint points.41

transients of 85 × 106 steps, using an equal amount of steps to count
spikes.

Figure 3(a) presents an isospike diagram for Hartley’s oscillator
focusing on the large region of abundant chaos, shown in black. The
white box in this figure is shown magnified in Fig. 3(b), which con-
tains two boxes with type-1 rings. The ring inside the smaller box
is shown in Fig. 3(c). Type-2 rings also exist for Hartley’s oscillator
but are not shown here. Thus, once again, we find the same types of
rings previously recorded for the VCSEL model (Fig. 1).

V. CONCLUSIONS

This paper reports the discovery of two types of stability rings,
i.e., single or multiple closed loops, in the control parameter plane of
a VCSEL. These rings are wide parameter circuits around which the
laser may be tuned while preserving its wave pattern. From a prac-
tical point of view, rings are attractive because laser stability thrives
along them, even in the presence of small parameter fluctuations.
Our findings complement and extend certain aspects of previous
works.14–17 From a theoretical perspective, stability rings are interest-
ing because there is no theory capable of predicting their existence
and localization. Therefore, as done here, they must be sought by
numerical analysis, something fortunately feasible nowadays with
high-performance and high-throughput computer clusters working
in parallel, benefiting from highly developed and reliable numerical
methods. In addition to the VCSEL, rings were also not difficult to
find in two additional and rather distinct applied systems, leading
us to conjecture that the rings reported here are generic characteris-
tics of large classes of dynamical systems. Within the framework of
the three rate equation models used, we expect stability rings to be
accessible to experimental verification, particularly, for the VCSEL
and for Hartley’s oscillator. We hope our findings will motivate their
experimental observation as well as further applications.
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