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Abstract

Our contribution focuses on the characterization of sleep apnea from a cardiac rate point of

view, using Recurrence Quantification Analysis (RQA), based on a Heart Rate Variability

(HRV) feature selection process. Three parameters are crucial in RQA: those related to the

embedding process (dimension and delay) and the threshold distance. There are no overall

accepted parameters for the study of HRV using RQA in sleep apnea. We focus on finding

an overall acceptable combination, sweeping a range of values for each of them simulta-

neously. Together with the commonly used RQA measures, we include features related to

recurrence times, and features originating in the complex network theory. To the best of our

knowledge, no author has used them all for sleep apnea previously. The best performing

feature subset is entered into a Linear Discriminant classifier. The best results in the

“Apnea-ECG Physionet database” and the “HuGCDN2014 database” are, according to the

area under the receiver operating characteristic curve, 0.93 (Accuracy: 86.33%) and 0.86

(Accuracy: 84.18%), respectively. Our system outperforms, using a relatively small set of

features, previously existing studies in the context of sleep apnea. We conclude that working

with dimensions around 7–8 and delays about 4–5, and using for the threshold distance the

Fixed Amount of Nearest Neighbours (FAN) method with 5% of neighbours, yield the best

results. Therefore, we would recommend these reference values for future work when

applying RQA to the analysis of HRV in sleep apnea. We also conclude that, together with

the commonly used vertical and diagonal RQA measures, there are newly used features

that contribute valuable information for apnea minutes discrimination. Therefore, they are

especially interesting for characterization purposes. Using two different databases supports
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that the conclusions reached are potentially generalizable, and are not limited by database

variability.

Introduction

Obstructive Sleep Apnea (OSA) is a widespread sleep respiratory disorder, characterized by

repetitive breathing pauses due to upper airway collapse during sleep. It can be considered a

public health problem, not only because of its high prevalence, 4% in men and 2% in women

[1], but also because of its major health implications [2–5]. These include daytime drowsiness,

cardiovascular disorders, such as hypertension, stroke, and glucose metabolism abnormalities,

all of them leading to increased mortality rates. Due to its relevance, there is a wide range of

articles on sleep apnea characterization and detection, its implications in the cardiovascular

system, and the relationship between sleep apnea and the autonomic nervous system (ANS)

[6–18].

The criterion used to decide whether a patient suffers from OSA is the mean number of

apneas per hour of sleep: Apnea-Hypopnea Index (AHI) [19]. In both apnea and hypopnea,

there is a complete (apnea) or partial (hypoapnea) cessation of airflow for at least 10 seconds.

Subjects with AHIs greater than 5 are OSA diagnosed and ranked according to the following:

AHI ranging [5,15]: mild sleep apnea; AHI ranging [15, 30]: moderate sleep apnea; and AHI

greater than 30: severe sleep apnea.

Motivation and problem description

The gold standard for OSA diagnosis is polysomnography (PSG). It includes the recording of

different physiological signals throughout the night at the hospital supervised by specialist

staff. The process is inconvenient for the patient, time consuming and very expensive for the

health care system. That is why several authors are making a major effort to create automatic

sleep apnea screening methods based on a smaller number of physiological signals and porta-

ble systems, with the aim of reducing waiting lists. The ECG signal has turned out to be espe-

cially interesting for screening purposes as it is modulated by sleep, breathing and the ANS.

Moreover, it can be easily recorded using wearable devices, in particular the single-lead ECG

signal. Most of the methods proposed in the literature for sleep apnea detection using the ECG

introduce features derived from the heart rate variability (HRV) and the ECG derived respira-

tory signal (EDR) [6–15,17–18,20].

The normal HRV is based on the autonomic neural regulation of the heart and the circula-

tory system, and changes in the HRV mirror the effects of different physiological factors mod-

ulating the normal heart rate [21]. HRV studies are performed using the RR series obtained

from the ECG. It is constructed by measuring the delay between two consecutive R-peaks of

the electrocardiogram. The sequence of consecutive delays forms the RR series.

The HRV provides valuable information about sleep apnea, due to its effects on heart rate

regulation. Under normal circumstances, there are periodic variations in the RR series due to

breathing phases (cardio-acceleration during inhalation and cardio-deceleration during exha-

lation) that are called respiratory sinus arrhythmia (RSA) [22]. This periodic information can

be observed around 0.25 Hz. Moreover, there is a cardiorespiratory phase synchronization

(CRPS) that defines the coupling between heart rhythm and respiration. Several authors have

addressed this topic and have concluded that this synchronization may change according to

diverse physiological conditions, such as different sleep stages or age [22–23], and that the
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“coupling direction” is from breathing to heartbeat. Bartsch et al. demonstrated that both RSA

and CRPS represent different aspects of the cardiorespiratory interaction [22].

During sleep, HRV dynamics and complexity change [6,24–25]. In particular, the respira-

tory muscles try to overcome the obstruction of the upper airway during an OSA episode. If

efforts are unsuccessful, the blood oxygen level decreases and consequently, muscle effort

increases until an arousal takes place to reestablish normal breathing. This process leads to bra-

dycardia, that starts after the air flow interruption and continues during the obstruction until

the arousal event. At this moment normal respiration is reestablished, and the reflex tachycar-

dia starts. Some authors have attributed this pattern of brady- and tachycardia to a parasympa-

thetic control of heart rate during sleep, interrupted by sympathetic activation that ends with

the arousal [24,26]. All this results in an increase of HRV [27], sympathetic overactivity [28],

and a loss of complexity [27]. Additionally, frequency components appear around 0.02 Hz as a

result of the brady/tachycardia patterns, called ‘cyclic variation of heart rate’ (CVHR), that

occur due to apnea repetition [6,29–30].

Since the underlying cardiorespiratory system and, by extension, the HRV, is dynamic,

nonlinear, and nonstationary [31–32], many authors have introduced nonlinear methods for

its analysis [33–37]. They are especially suited for the analysis of complex autonomic and respi-

ratory control mechanisms that interact in the regulation of the cardiac function to maintain

homeostasis [38]. Webber and Zbilut [39] and Guzzeti et al. [40] also suggested that the HR

control system is a deterministic chaotic system modulated by the ANS, in which recurrences

within a state space is one of its typical properties [39]. Recurrence is defined as the repeated

occurrence of a given state of the system in time [41]. However, it is important to point out

that there are also other authors, like Glass [42], who believe that the HRV does not display

chaotic dynamics. This is considered a controversial topic that remains an open and widely

discussed issue [42].

All these characteristics lead us to Recurrence Quantification Analysis (RQA), introduced

by Zbilut and Webber in 1992 [43]. RQA is the quantitative analysis of Recurrence Plots (RPs),

which represent the recurrences in a dynamical system. Analyzing RP structures allow us to

obtain information about the system dynamics. Compared with other nonlinear analysis

methods, this technique is suitable for the analysis of short and non-stationary data, or when

the system dynamics is located in a higher dimensional space, like the cardiac system [38,44].

A notable characteristic of RQA is that, unlike other techniques, no data transformation is

needed. It is only necessary to represent similar events within an embedded space [45].

Despite RQA’s advantages in the detection of dynamic changes, it is important to point out

that, as relevant researchers in the matter state [45–48], results can be easily influenced by the

setup parameter values, mainly the embedding parameters (delay and dimension) and the dis-

tance threshold, necessary for constructing the RP [46]. In general, the estimation of dynam-

ical invariants is not dependent on the embedding, but the RQA measures are [47–48].

Review of relevant literature

RPs were first introduced in 1990 by Zbilut et al. [49] for HRV analysis. Mammoliti et al. [50]

applied RQA to derive information about nonlinear properties of HRV, employing RQA to

inter-beat interval (RR) series. They stated that HRV in healthy human subjects in a relaxed

state is characterized by the definite presence of complex and deterministic behavior. How-

ever, they also suggested that further studies would be necessary to compare results in other

physiological conditions, such as illness. In the last 15 years, many authors have introduced

RQA, among others, for the analysis of HRV in ventricular tachycardia [33], ventricular

arrhythmias [32], sleep apnea [11–13,34], diabetes mellitus [41], paroxysmal atrial fibrillation
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[36], preeclampsia [51], and vasovagal syncopes [52]. So RPs and RQA can be considered a

classical tool to analyse the cardiac system.

RQA was first introduced in sleep apnea studies by Maier and Dickhaus [34]. They

compared the results obtained when using the distance matrix (DM), the RP and spectral

techniques, applied to HRV, and concluded that spectral techniques, being simpler and com-

putationally less demanding, yielded comparable results to those obtained with the other

approaches. Therefore, they questioned the utility of RQA to yield additional insight into sleep

apnea recognition from HRV. The selected values for embedding dimension and delay,

obtained from preliminary research, were 7 and 5 respectively. As far as the distance threshold

(ε) is concerned, they justified not using a fixed value, due to the considerable inter- and intra-

individual variability. Instead, they controlled the number of recurrent points for each vector,

assigning εj the 5th percentile of the distribution of all distances. On the other hand, they also

worked directly with the recurrence matrix, thus avoiding the use of any threshold. It is impor-

tant to emphasise that only measures based on diagonal structures were used in the experi-

ments. The authors did not rule out the possibility that other RQA measures and another set

of parameters may yield better results.

Le et al. [11] combined RQA features and power spectral density (PSD), obtained from the

RR intervals, and employed SVM to determine the sleep apnea events. They used the same val-

ues as Maier and Dickhaus [34] for the embedding parameters (dimension: 7 and delay: 5),

and for the distance threshold, 10% of the maximum phase space diameter. They introduced,

beyond the typical diagonal and vertical lines related RQA measures, the recurrence times of

1st and 2nd type, the recurrence period entropy density, and the transitivity. According to

their results, the most sensitive RQA feature is the length of the longest vertical line.

Karandikar et al. [12] applied RQA to HRV and to EDR signals and carried out different

combinations to assess the classification system. Like Maier and Dickhaus [34], and Le et al.

[11], they chose 7 and 5 for the embedding parameters, dimension and delay, respectively, and

concluded, as Le et al. [11], that the most sensitive RQA feature was the length of the longest

vertical line. There is no explicit reference to the method used for the distance threshold

selection.

Nguyen et al. [13] applied RQA only to the HRV signal. They used the Fixed Amount of

Nearest Neighbours (FAN) criterion for the distance threshold selection for the first time in

the context of sleep apnea. Thus, they tried to better capture HR dynamics associated with

OSA. Particularly, eight different values were tested, ranging from 2.5% to 20%, as they tried to

extract a more comprehensive profile representation of the underlying dynamics. In their

opinion, FAN is more suitable for HRV data analysis, since it does not require attractors to be

of a similar volume for the comparison of state-space behaviors. In this way, a predefined per-

centage of recurrence points is set for all states [53]. They also changed the selection of the

embedding parameters and chose for the dimension 6 and for the delay 10. This way they

improved the results obtained in previous work. Unlike other authors, they found the embed-

ding dimension by referring to the estimation of the number of representative variables

expected to influence the system. Furthermore, the delay was determined as the time required

to achieve variable independence and avoid redundancy. For classification purposes, they used

SVM, neural network (NN), and a soft decision fusion rule to combine their results.

And finally, Cheng et al. [18] applied a modified version of RQA, heterogeneous RQA

(HRQA) to sleep apnea, and again changed the values for the embedding parameters. They

chose 5 and 3 for delay and dimension, respectively.

Analyzing the studies carried out by different authors using RQA applied to HRV (see

Table 1) [32–33,36,41,50–56], and, in particular, in the context of sleep apnea [11–13,18,34],

we can conclude that there is neither an agreement about the optimal set of parameters that
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should be used, nor about the best method to find the distance threshold. Most of the latter

articles use the same database, the Apnea-ECG Physionet database, as well as the same strate-

gies to obtain the parameter values. However, we find different figures for the dimension of

the system, 3 [18], 6 [13] and 7 [11–12,34]; and for the delays, 5 [11–12,18,34] and 10 [13]. Dif-

ferent strategies are introduced for the threshold. The most important aspect is that the choice

of these parameters is related to the structure and dynamic characteristics of the system under-

lying sleep apnea, and, although different values are found, they are all attempting to describe

the same system.

Objectives of this study

Although many authors have analysed HRV in the context of apnea detection, the mechanisms

are still unclear and, therefore, there is no defined model that describes the complex dynamics

within the cardiovascular system during apnea. That is why we consider there is a margin for

further studies to improve the characterization of the underlying process and to explore new

features which extract as much information as possible from the ECG.

There are two main goals in this article. On the one hand, we concentrate on the selection

of the parameters involved in RQA. As there are no overall accepted values for the study of

HRV using RQA in sleep apnea, we carry out a thorough exploratory analysis of the system,

sweeping the three most important parameters involved in RQA, dimension and delay for the

embedding, and threshold selection for the RQA evaluation, simultaneously. Thus, we can also

analyse the cross effects in the selection of the different parameters. The objective would be to

find reference values for the different parameters implied in the RQA approach in the context

of sleep apnea recognition from HRV, and to reach conclusions about the structure and

Table 1. Selected parameters in articles where RQA is applied to HRV.

Article Delay Dimension

[50] RQA describes the complex and deterministic behavior of HRV in healthy subjects 4 8

[54] A nonlinear explanation of aging-induced changes in heartbeat dynamics 1 15

[33] Recurrence Quantification Analysis to characterize the heart rate variability before the onset of ventricular

tachycardia

1 3–15

[55] Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals - 10

[56] Recurrence-plot-based measures of complexity and their application to heart-rate-variability data - 3, 6, 9, 12

[32] Linear and nonlinear evaluation of ventricular arrhythmias 8 10

[34] Recurrence analysis of nocturnal heart rate in sleep apnea patients 5 7

[41] Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Individually set for each

recording

10

[53] The effect of orthostasis on recurrence quantification analysis of heart rate and blood pressure dynamics Individually set for each

recording

10

[36] Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal. 1 7

[11] Prediction of sleep apnea episodes from a wireless wearable multisensor suite. 5 7

[12] Detection of sleep apnea events via tracking nonlinear dynamic cardio-respiratory coupling from

electrocardiogram signals.

5 7

[51] Classifying healthy women and preeclamptic patients from cardiovascular data using recurrence and complex

network methods.

- -

[13] An online sleep apnea detection method based on recurrence quantification analysis. 10 6

[52] Recurrence plot of heart rate variability signal in patients with vasovagal syncopes. - -

[18] Heterogeneous recurrence analysis of heartbeat dynamics for the identification of sleep apnea events. 5 3

Articles related to sleep apnea are highlighted in bold.

‘-’ appears in the cases where no explicit value was given.

https://doi.org/10.1371/journal.pone.0194462.t001
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dynamic characteristics of the underlying physiological system. On the other hand, we focus

on furthering the knowledge of sleep apnea by uncovering the most relevant RQA features that

best describe the RR pattern in OSA.The most representative features of the sleep apnea mech-

anisms are chosen using a forward feature selection algorithm.

The selected features are the input of a Linear Discriminant classifier, that produce a min-

ute-by-minute classification of apnea and nonapnea minutes, also called quantification or per-

segment classification. The experiments were carried out using two databases to give the

results a more generalizable character, so that conclusions would not be limited by database

variability.

Materials and methods

Databases

Two databases are used in the experiments, namely, the widely used Apnea-ECG Physionet

database, referred to in the text as Physionet database, provided by Prof. Dr. Thomas Penzel

for Computers in Cardiology Challenge 2000 [57], and the HuGCDN2014 database [58], pro-

vided by the Dr. Negrı́n University Hospital (Canary Islands, Spain). Neither of them distin-

guishes between apnea and hypopnea, defining them both as apnea.

The Physionet database consists of 70 single-lead ECG recordings, digitized at 100 Hz with

12-bit resolution. Their duration varies between 401 to 578 minutes (about 8 hours). Each

minute was labeled as apneic or nonapneic by a human expert based on other signals recorded

simultaneously.

According to the number of apneic minutes, the subjects were classified in three groups: 1º)
GROUP A: recordings with at least 100 minutes with apnea (fifteen men and one woman). 2º)
GROUP B: recordings with a number of apnea minutes between 5 and 99 (four men and one

woman). 3º) GROUP C: recordings with fewer than 5 minutes with apnea (six male and five

female subjects). Both the learning set (L) and the test set (T) are made up of 20 class A record-

ings, 5 class B recordings, and 10 class C recordings.

The HuGCDN2014 database was provided by the sleep unit of the Dr. Negrı́n University

Hospital. It is made up of 77 single-lead ECG recordings, digitized at 200 Hz. The labeling pro-

cess was performed by an expert based on the simultaneous polysomnography, indicating the

presence or absence of apnea in each minute. The database is divided into two groups: 1º)
CONTROL: Forty healthy subjects with an AHI lower than 5 (30 men and 10 women). 2º)
APNEA: Thirty-seven OSA patients with an AHI higher than 25 (30 men and 7 women). The

learning set (L) consists of 20 recordings of control subjects and 18 OSA patients. The rest

belong to the test set (T).

Preprocessing of the signal

The single-lead ECG signal is divided into 5-minute frames, that are shifted in time in incre-

ments of 1 minute. The RQA measures and the quantification obtained for each segment are

assigned to the minute located in the middle position. Despite the fact that the analysis is done

on a minute-by-minute basis, 5-minute frames are also suitable since a CVHR oscillation var-

ies between 20 and 60 s, so recurrence of CVHR is only recognizable if several oscillations are

contained in the frame [34]. Le et al. [11] use a larger window (10 minute windows and 1 min-

ute sliding step), that in our opinion is not necessary.

The R-peak detection is inspired by the Pan-Tompkins algorithm [59], and the RR interval

series is constructed as a sequence of time differences between the successive heartbeats. Once

the RR series are obtained, an adaptive filtering procedure for automatic artefact removal is

applied [60]. This is necessary as artefacts and ectopic values often corrupt HRV analysis. The
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advantage of this method is the spontaneous adjustment of the system coefficients to sudden

changes in the series.

Recurrence plots and recurrence quantification analysis

Recurrence, first introduced by Poincaré in 1890 [61], is a fundamental property of determin-

istic dynamical systems [33]. Eckmann et al. proposed in 1987 the use of RPs to visualize the

recurrence characteristics of systems [62]. An RP is a two-dimensional plot that represents a

binary symmetric square recurrence matrix. This defines the times where two states can be

considered neighbours in the phase space, as they are in close proximity, according to a cut-off

threshold [36,63]. That is, it allows us to visualize recurrences of a trajectory in a phase space

and can be useful to uncover hidden periodicities and characteristics which otherwise would

remain unnoticed [45].

Before constructing an RP of a time series, u(t), data must be embedded in a phase space, as

nonlinear data analysis is based on the study of the time evolution of a dynamical system in a

given phase space [64]. The goal is to reconstruct a multivariate phase space that represents the

original system. The most widely used strategy is Takens time delay method [65]. It is based

on the fact that a higher-dimensional system, consisting of multiple coupled variables, can be

reconstructed from a single measured variable of that system [63]. It is a very valuable method,

since it allows us to study the system dynamics registering only one of its variables. The recon-

struction is carried out generating time-delayed copies of the variable under study. In this way,

the original time series is considered one dimension of the underlying system and each of its

delayed copies becomes a new dimension of the system. The elements of the constructed phase

space represent possible states of the structure. A phase state is defined as follows:

x!i ¼ ½uðiÞ; uðiþ tÞ; . . . ; uðiþ ðm � 1Þt� ð1Þ

where m is the embedding dimension and τ, the time delay. The dimension m is estimated tak-

ing into account the number of independent variables influencing the system under study.

Physiological systems are controlled by a large number of continuously changing and interact-

ing variables accompanied by noise [55]. These networked interactions take place according to

couplings and feedback mechanisms that occur at multiple levels [66–68]. Finding out the

optimal value for the dimension through the exploratory analysis will help us to infer the num-

ber of variables that underlie sleep apnea in the cardiovascular system. The greater the number

of variables, the more complex the system [63]. So, if we consider that m components can rep-

resent a state at a certain time t, we will assume an m-dimensional phase space. It is important

to take into account that, for noisy or random data, higher dimensions may be necessary [69].

The delay is chosen so as to achieve variable independence, avoiding the construction of state

vectors that are autocorrelated [70].

After the embedding, the RP is created according to the following equation:

Ri;j ¼ Yðεi � k x
!

i � x!jkÞ; i; j ¼ 1; 2; . . . ;N ð2Þ

where N is the number of reconstructed points x!i, ε, the threshold distance, Θ, the Heaviside

function (Θ(x) = 0 if x< 0 and Θ(x) = 1, otherwise), and ||�||, the norm [45]. First, the distance

matrix (DM) is constructed, and afterwards, the cutoff distance is applied to find the recur-

rence matrix (RM). In this way we obtain an N x N symmetric matrix, containing Ri,j = 1, if x!i

and x!j are neighbours, according to the ε-threshold, and Ri,j = 0, if not. The RP is the graphi-

cal representation of the RM. As Ri,i = 1, the RP always has a black main diagonal, called line of

identity (LOI). Elements near the main diagonal correspond to short-range correlations and
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distant ones to long-range correlations [54]. In case of stochastic or chaotic signals, RPs are

formed by isolated points with no, or very short, diagonal structures, whereas periodic and

deterministic signals show longer diagonals with less single recurrence points [36]. However,

it is important to take into account that only periodic signals and white noise can be identified

with some confidence. For the remaining signals, observing the RP structures does not let us

reach definite conclusions about the system dynamics [48].

Since the selection of ε is decisive for the results, it must be chosen carefully. If ε is chosen

too small, the different points of the trajectory will have hardly any neighbours, resulting in

very few recurrences. However, if it is chosen too large, almost every point in the phase space

will be considered a neighbour, leading to many artefacts [45]. Therefore, the ε selection is a

trade-off, it should be chosen as small as possible, but large enough to have sufficient recur-

rence structures to quantify. Noise is another aspect that can influence the choice of the thresh-

old, as it can make larger values necessary.

The commonly used RQA features are based on the recurrence point density and on the

diagonal, vertical and horizontal line structures that appear in the RP [45]. There is another

group of features that can be derived from RPs, which are related to recurrence times [45].

And finally, we also include new measures found in complex network theory, such as cluster-

ing coefficient or transitivity [71], that, when applied to recurrence matrices, are more power-

ful and reliable for the detection of periodic dynamics [48,72–74].

In this study, 17 features were extracted from the RP of each 5-minute frame. The first one

is related to the recurrence point density: Recurrence Rate (REC). It quantifies the percentage

of recurrent points in an RP and represents the average number of neighbours each element of

the phase space has in its neighbourhood. Higher recurrence means lower system variability,

since REC represents the probability that a certain state recurs [52].

REC ¼
1

N2

PN
i;j¼1

Ri;j ð3Þ

where N is the dimension of the recurrence matrix.

There is another group of features related to the diagonal lines structures: determinism,

average diagonal line length, length of the longest diagonal line, and entropy. Diagonal lines

appear in the RP in the case of parallel running trajectory segments [48]. Thus, a diagonal line

represents a stable recurrence for a period coinciding with the length of the diagonal [75]. Par-

ticularly, if a diagonal is of length l, it means that a section of the trajectory is rather close dur-

ing l time steps to another section, but at a different time [45]. This group of measures is based

on the probability distribution, P(l), of the lengths l of the diagonal lines, estimated from the

histogram. By establishing a minimal length (lmin) for it to be considered a diagonal line, we

are able to adjust the sensitivity of the measures. RPs with no diagonals are typical for stochas-

tic signals, very short diagonal lines for chaotic ones, longer diagonals correspond to determin-

istic processes and very long diagonal lines for periodic signals [63].

Determinism (DET) is the percentage of recurrent points forming diagonal lines of at least

length lmin to all recurrent points [32]. It can be considered a measure of predictability and reg-

ularity of the system dynamics over time [41,45].

DET ¼
PN

l¼lmin
lPðlÞ

PN
i;jRi;j

ð4Þ

It is common to define lmin = 2, since higher values could result in a sparse histogram, thus

decreasing the DET reliability. In our studies, we define lmin = 2.
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The average diagonal line length (L) is the average time that two sections of the trajectory

are in close proximity and can be interpreted as the mean prediction time [45].

L ¼
PN

l¼lmin
lPðlÞ

PN
l¼lmin

PðlÞ
ð5Þ

The divergence is the inverse of the length of the longest diagonal line (Lmax). These mea-

sures are linked with the divergence of the phase space trajectory, i.e. shorter diagonal lines

appear when trajectory sections diverge fast [45].

The entropy (ENTR) is the Shannon entropy of the diagonal lines length distribution.

ENTR ¼ �
PN

l¼lmin
pðlÞ lnpðlÞ ð6Þ

where p(l) = P(l) / Sl � lmin P(l). So, DET is concerned with the number of diagonals and

ENTR with the distribution of the diagonal lengths.

DET, L and Lmax show higher values for more regular and correlated systems than for sto-

chastic ones.

Another group of features is related to the vertical lines structures: laminarity, trapping

time, and maximal length of vertical lines. Analogous to the diagonal lines structures, these fea-

tures are based on the probability distribution, P(v), of the lengths v of the vertical lines in the

RP, considered only if they are longer than vmin. As for lmin, 2 is a commonly used value for

vmin, and we use it in our studies. Horizontal and vertical lines appear when a system state does

not change for some time or changes very slowly. Therefore, they can be considered useful for

the study of intermittencies. In general, RQA measures based on vertical structures are much

more sensitive to the embedding than those based on diagonal ones [56].

The laminarity (LAM) is, as in DET, but for the vertical lines, the percentage of recurrent

points forming vertical lines of at least length vmin to all recurrent points.

LAM ¼
PN

v¼vmin
vPðvÞ

PN
i;jRi;j

ð7Þ

The trapping Time (TT) is the average length of vertical lines, i.e. analogous to L, but for

the vertical lines.

TT ¼
PN

v¼vmin
vPðvÞ

PN
v¼vmin

PðvÞ
ð8Þ

TT estimates the average time the system stays in a specific state and contains information

about the frequency of the laminar states and their lengths. High TT values represent systems

consisting mainly of laminar states, whereas low TT values indicate systems without laminar

states [45].

The maximal length of vertical lines (Vmax) gives information about the duration of the

laminar states [45]. LAM is more robust against noise than TT and Vmax [52].

In the analysis of results, it is important to take into consideration that LAM, TT and Vmax

are inversely proportional to the system complexity. This means that low LAM, TT and Vmax

values imply high complexity in the system dynamics, because the system remains briefly in a

state similar to the previously occurring one [41].

The other group of features is related to recurrence times: recurrence time type 1, recur-

rence time type 2, mean recurrence time, recurrence time density entropy, maximal recur-

rence time, minimal recurrence frequency, and entropy of the white vertical lines. Once the
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recurrence points are known, the recurrence times between them can be calculated. The recur-

rence times of type 1 (T1) and 2 (T2) are the average value of all recurrence times. The differ-

ence is that, for T2, the recurrence points are ruled out, due to possible tangential motion, i.e.

T2 contains information about the time distance between the beginning of subsequent recur-

rence structures [45].

Recurrence time type 1 (T1) [76] is:

T1 ¼
1

N
PN

i¼1
Tð1Þi ð9Þ

Tð1Þi : the average of the minimum time difference between points in the neighbourhood of a

point i on the reconstructed trajectory [77].

Recurrence time type 2 (T2) [76] is:

T2 ¼
1

N
PN

i¼1
Tð2Þi ð10Þ

Tð2Þi : the average return time (i.e. the minimum time difference between the recurrence points

in the neighbourhood of point i on the reconstructed trajectory excluding all successive time

points) [77].

The Mean Recurrence Time (RT) [78–79] is an alternative estimator for T2 but for the cal-

culation, the focus is put on the white vertical lines [45]. Vertical and horizontal white bands

result from rarely occurring states [80]. It is defined as the average of the lengths of the white

vertical lines in the RP.

RT ¼
PN

w¼1
wPðwÞ

PN
w¼1

PðwÞ
ð11Þ

where P(w) stands for the frequency distribution of the lengths w of white vertical lines.

The Recurrence Period Density Entropy (RPDE) contains information about the periodic-

ity characteristics of a signal in the context of dynamical systems. This measure is particularly

suitable to detect repetitions of the same sequence of a time series in the phase space of the sys-

tem.

RPDE ¼ limε!1limm!1
1

t
ln

cmðεÞ
cmþ1ðεÞ

ð12Þ

The white vertical lines also indicate the maximal recurrence time (RTmax), as the longest

length of the white vertical lines, the minimal recurrence frequency (RF), as the inverse of

RTmax, and the entropy of the white vertical lines (ENTW).

And finally, there is a group of measures originating in the complex network theory. Mar-

wan et al. [72] introduced in 2009 a new approach for analyzing time series using complex net-

work theory by identifying the recurrence matrix with the adjacency matrix of a complex

network, that represents the links between the nodes of the network. This equivalence is valid

for undirected and unweighted networks. In this analogy, phase space vectors can be consid-

ered the nodes of a network, and the recurrences in the phase space, the links between them.

Therefore, complex network measures can be applied on RPs in order to quantify the RP struc-

ture and the topology of the phase space. In this way, additional information can be obtained

about the dynamics of the underlying process. The measures used in this article are transitivity

and clustering coefficient. Transitivity of a complex network is related to the probability that

two neighbours of any state are also neighbours, and this measure indicates how much a net-

work is locally clustered [72,81]. Watts and Strogats [82] define another way of finding the
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local clustering degree, the clustering coefficient. First they calculate the local clustering coeffi-

cient for each node, and the clustering coefficient is the average of all nodes [81]. The adja-

cency matrix A used in their definitions is the recurrence matrix from which the identity

matrix is subtracted (Aij = Rij−δij where δij is the Kronecker delta) [79].

The clustering coefficient [72] is:

Clust ¼
PN

i¼1

PN
j;k¼1

Ai;jAj;kAk;i

RRi
ð13Þ

where RRi ¼
PN

j¼1
Ai;j is the local recurrence rate.

The transitivity [79] is:

Trans ¼
PN

i;j;k¼1
AjkAijAik

PN
i;j;k¼1

AijAik

ð14Þ

The CRP Toolbox (provided by TOCSY: http://tocsy.agnld.uni-potsdam.de) was used for

the experiments.

Parameter selection

Since the signal under analysis is dynamic, nonlinear and nonstationary, the choice of the differ-

ent parameters that are necessary for the RQA analysis is not straightforward. However, regard-

less of the parameter values, it is important to guarantee that the features obtained from the

datasets (representing apnea and nonapnea minutes) are calculated under the same conditions.

First, we focus on the selection of delay and dimension. The delay must be given before the

minimum embedding dimension can be determined [83]. In general, there are two widely

used methods to choose the delay: the (linear) autocorrelation (AC) or (nonlinear) mutual

information (MI), calculating the first local minimum or the first zero crossing [63]. Webber

and Zbilut [43,63] suggest setting the delay to 1 for RR signals, i.e. no points in the time series

are skipped. As shown in Table 1, some authors have followed this suggestion [33,36], but oth-

ers have proven different values [11,32,34].

In the experiments the first zero crossing was considered. For each frame, representing a

minute, the AC and MI were calculated. The results obtained for each of the databases, both

for apnea and nonapnea minutes, are shown in Fig 1. The outcomes when using AC and MI

are not exactly the same, especially in apnea minutes. Nevertheless, we can see a range, from 1

to 12, that is used in the experiments, where all maxima are included. This interval also con-

tains the most common values used in literature for HRV analysis (see Table 1). If the delay is

chosen properly, lower values for the minimum dimension may be necessary to reconstruct

the phase space [83].

As far as the dimension is concerned, it is important to define a sufficiently large dimension

that mirrors the relevant system dynamics. Choosing a dimension too low would cause points,

that in the original phase space are far apart, to be considered closer in the reconstructed space

[83]. The False Nearest Neighbours (FNN) Method is the most widely used to define the

dimension. A neighbour is considered a false neighbour when it is viewed in a state space with

a dimension that is too small. The dimension is increased in integer steps until the number of

nearest neighbours becomes unchanged, i.e. when the number of false nearest neighbours

drops to zero, meaning that the embedding of the time series is carried out in a proper dimen-

sional space [36,84].

To define the dimension range in our experiments we used the FNN Method. Due to the

practical dependence on the delay [83], delays ranging between 1 and 16 were employed to
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study the best values for the dimension. In agreement with the results shown in Fig 2, we can

find in both databases the maxima for dimensions 5, 6 and 7, regardless of whether they are

apnea or nonapnea minutes. As Cheng et al. [18] used dimension 3 for sleep apnea, we

Fig 1. Optimal delays based on autocorrelation and mutual information for apnea and nonapnea minutes. (A and

B) Physionet. (C and D) HuGCDN2014.

https://doi.org/10.1371/journal.pone.0194462.g001

Fig 2. Dimension for apnea and nonapnea minutes according to different delays. (A and B) Physionet. (C and D)

HuGCDN2014.

https://doi.org/10.1371/journal.pone.0194462.g002
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included dimensions 3 and 4 in our experiments. For the upper bound we chose 9. Seven is the

highest dimension used in the context of sleep apnea but, in general, higher values are also

found for HRV (Table 1). Therefore, we decided to include dimensions 8 and 9. In summary,

for the dimension, we sweep the range from 3 to 9, and also include the possibility of non

embedding (dimension = 1). In the latter case, RQA measures are directly obtained from the

time series. This option was introduced by Ngamga et al. [79] in a study on epilepsy using EEG

data.

It is important to take into account that HRV originates from the interaction of different

control loops in the cardiovascular system and the ANS, leading to a timevarying phase space.

So, optimal values for dimension and delay may change with time and, therefore, for every

frame as well. In this respect, we can conclude that there is no optimal unique value for all

patients and all minutes. However, according to the criteria followed when RQA is used for

classification purposes, we should construct a common phase space with fixed values for delay

and dimension, so that all the time series are embedded in the same phase space. We could use

the average of the estimated dimension/delay values, but in our experiments the main goal is

to extract information about the underlying physiological process. So we have swept a range of

values for each of the embedding parameters (delay and dimension), and hence, we will be

able to infer from the best results those values that best describe the system.

The other crucial parameter is the distance threshold. In general, we can either choose a

fixed value, so that εi = ε, hereinafter referred to as Fixed Distance Method, or this parameter

can be defined so that each point of the trajectory is surrounded by a constant number of

neighbouring states, i.e. εi changes for each state, called Fixed Amount of Nearest Neighbours

(FAN) Method. The latter case results in an asymmetric RP and a constant density of recur-

rence points in each of its columns [80]. In general, the Fixed Distance Method is used more

often than the FAN Method. In the literature there are several works that address the optimal

selection of the distance thereshold, ε [45–46,78,85–87], but, in spite of all the effort, it remains

unsolved.

In the RQA analysis of HRV for sleep apnea detection, several authors have used the Fixed

Distance Method and the FAN Method. In our experiments, we introduce both in order to

evaluate which is more suitable in this context. In the Fixed Distance Method, the threshold is

defined depending on the standard deviation of the particular frame, as this is one of the crite-

ria especially suited for signal detection [78]. The selected values are based on the work done

by Ramı́rez et al. [51]. For the FAN criterion, 12 different values were tested, ranging from 1%

to 25%, based partially on the values chosen by Nguyen et al. [13]. However, their approach is

different. They evaluate 9 RQA measures for eight different FAN values, obtaining 72 RQA

features that are entered into a feature selection process. The final feature subset is made up of

33 features belonging to different FAN values. However, we assess the system performance for

each of the FAN values, carrying out the feature selection process using the 17 features

obtained for each of them.

We can see from all the previous work on the search for the necessary set of parameters

involved in the relatively new RQA method, that it remains an open and widely discussed

issue, especially in the case of the threshold distance.

Classifiers

Since one of our goals is to extract as much information as possible from the physiological pro-

cess associated with apnea, the classification process is done on a minute-by-minute basis,

deciding whether the evaluated minute shows apnea or not. Linear Discriminant Analysis
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(LDA) is proposed for the quantification of apnea minutes, as this classifier balances perfor-

mance, complexity and interpretation capacity.

The LDA classifier is based on a parametric model, whose parameters are adjusted using

the learning set. We assume a class-dependent multivariate Gaussian distribution for the fea-

tures:

fk xð Þ ¼
1

ð2pÞ
p
2j
P

kj
1
2

e�
1
2
ðx� mkÞ

T
P� 1

k
x� mkð Þ

ð15Þ

where μk and Sk are the mean vector and covariance matrix of each class k (apnea and nonap-

nea). In LDA, the covariance matrices are considered equal in both classes (Sk = S).The

parameters of the Gaussian distributions are obtained as follows:

m̂k ¼
P

gi¼kxi=Nk ð16Þ

P̂
¼
PK

k¼1

P
gi¼kðxi � m̂kÞðxi � m̂kÞ

T
=ðN � KÞ ð17Þ

One minute is classified as apnea if:

xTP̂ � 1 m̂ap � m̂nap

� �
>

1

2
mT

ap

P̂
� 1m̂ap �

1

2
mT

nap

P̂
� 1m̂nap þ log

Nnap

N

� �

� log
Nap

N

� �

ð18Þ

where m̂ap and m̂nap are the mean vectors of class apnea and nonapnea respectively, and Nap and

Nnap are the number of apnea and nonapnea observations.

Based on the estimation of the a posteriori probability for each class, the frame is assigned

to the class that shows the largest value.

Feature selection technique

A fundamental step after generating the feature vectors for each RR-frame, is the selection of

the feature subset that best distinguishes between the two classes, since this selection facilitates

the physiological interpretation of the results.

Therefore, we use a repeated random sub-sampling validation to reduce the dimensionality

and, at the same time, increase the accuracy [16,20,30,37]. The selected features improve apnea

quantification as they describe in greater detail the RR pattern in OSAS. We used 250 itera-

tions in all cases under study, as this number allows us to find stable results.

In the process, we only use the learning set (L). We divide it into two equally-sized groups

that form a training set and a validation set, each of them containing the feature vectors of the

randomly selected patients in each iteration. In this way, we avoid feature vectors from one

patient being simultaneously in the training set and in the test set.

The first step is to obtain a ranking of features created according to the number of times a

certain feature is selected by the sequential forward feature selection method (based on the

classifier performance). In each iteration, the optimal feature set corresponds to the maximum

accuracy in the validation set.

In the second step, again repeating a random sub-sampling validation process 250 times,

the error rate is obtained for an increasing number of features. They are entered in the same

order as they appear in the ranking created in the first step. This allows us to analyze the evolu-

tion of the averaged misclassification error, obtained for the validation data, according to the

number of features. The final selected features in the process will be those that produce the

minimum misclassification error. In all cases, the number of features selected is smaller than

the original number of features.
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Results

The general goal of all data analysis presented in this article is to detect the parameter combi-

nation that reaches the best discriminant capacity between apnea and nonapnea minutes when

using RQA applied to sleep apnea. This allows us to infer information about the parameter val-

ues that best describe the HRV patterns associated to sleep apnea. On the other hand, the anal-

ysis of the selected features will allow us to detect those that are especially interesting for

characterization purposes, as they show the highest discriminatory power.

Following Shinckel et al. [78], we use the area under the curve (AUC) of the receiver operat-

ing curve (ROC) as the main performance measure of the system, as it can be considered a

summary of the ROC.

Dimensions, delays, and distance thresholds

Tables 2–5 show the results (AUCs, accuracies, distance threshold, and number of selected var-

iables) obtained for all combinations, using the test sets (T) of both databases. In each table,

the best results for each dimension are highlighted. The first value in each box shows the AUC,

the second one, the accuracy, and the fourth one, the number of selected variables. When the

Fixed Distance Method is used for the threshold (ε) (Tables 2 and 4), the third value in each

box represents the best value to multiply by σ, the frame standard deviation. When the FAN

Method is used (Tables 3 and 5), the third value shows the percentage of neighbours to be

considered.

Figs 3 and 4 show how AUCs and accuracies evolve depending on the dimension and the

delay for both databases. The possibility of non embedding is represented by dimension 1. The

best results in Physionet are AUC = 0.93 (dimension = 7, delay = 4, FAN-5%) and Acc =

86.33% (dimension = 8, delay = 3, FAN-5%), and in HuGCDN2014, AUC = 0.86 (dimen-

sion = 8, delay = 5, FAN-5%) and Acc = 84.18% (dimension = 9, delay = 5, FAN-5%).

In Tables 2 and 4, representing the results for the Fixed Distance Method, we can see a

delay that is best for every dimension. For Physionet, delay 1 is the best, and for HuGCDN2014

delays around 8–9 yield the best results. In Table 2, for dimensions 5 and 9, delay 1 was chosen,

as AUC values were very similar to the best ones and included fewer variables. As far as the dis-

tance threshold is concerned, we can see that, in the best cases (Tables 2 and 4), increasing the

dimension implies that higher values are needed. In Physionet, values increase from 1.2 to 1.8,

and in HuGCDN2014 from 0.8 to 2.2. This might imply that increasing the dimension also

increases the distance between the points of the phase space. Therefore, a higher distance is

needed to include enough neighbours in the neighbourhood, thus allowing us to extract the

recurrence information.

However, the results obtained using the FAN Method, shown in Tables 3 and 5, differ sig-

nificantly from the previous ones. In general, better AUCs and accuracies are reached. In this

case, the outcomes for both databases are rather similar. To achieve the best results, a lower

delay is needed when increasing the dimension. Moreover, there is a very interesting finding

we consider a novel contribution in the RQA analysis. For dimensions over 5, there is a ten-

dency towards stabilization in the optimal delay value (see Tables 3 and 5). As this behaviour is

independent of the database, we would expect the same evolution in other datasets. The best

results are reached in both databases for delays around 4–5, dimensions around 7–8, and 5%

of neighbours is preferred in most cases. Only in a few cases do 7.5% or 10% yield better

results. As in the FAN Method this percentage represents the density of recurrence points in

each of the columns, we can see that the best value coincides with the REC proposed by other

authors [41].
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Feature selection

The RQA measures of HRV commonly used for sleep apnea detection are: REC, DET, L,

Lmax, ENTR, LAM, TT, Vmax. T1, T2, RPDE and Trans were first used in this context by Le

et al. [11]. However, no author has used other features, like the Clustering Coefficient (Clust),

Mean Recurrence Time (RT), maximal Recurrence Time (RTmax), Recurrence Frequency

(RF) and Entropy of the White Vertical Lines (ENTRW), before in sleep apnea. Therefore, we

introduce them in our experiments to evaluate the system and to uncover the importance of

these features in the system performance and, by extension, in the characterization of sleep

apnea from a cardiac rate point of view.

Tables 6–9 show the rankings of selected features for each case: Physionet database using

the Fixed Distance Method, Physionet database using the FAN Method, and in the same way

for the HuGCDN2014 database. The first column contains the best combinations dimension

Table 2. AUCs, accuracies, distance threshold and number of selected variables in Physionet with Fixed Distance Method.

DELAY DIMENSION 1 3 4 5 6 7 8 9

1 0.8920 0.9012 0.8995 0.8985 0.8979 0.8997 0.8998 0.8972

82.49% 83.19% 83.28% 83.32% 83.11% 83.18% 82.84% 83.24%

1–9 VAR 1.2–10 VAR 1.2–9 VAR 1.4–7 VAR 1.6–6 VAR 1.6–6 VAR 1.6–10 VAR 1.8–7 VAR

2 0.8938 0.8953 0.8970 0.8972 0.8979 0.8997 0.8982

82.31% 82.48% 82.49% 82.40% 82.52% 82.71% 82.61%

0.8–13 VAR 1–15 VAR 1–15 VAR 1.2–11 VAR 1.4–10 VAR 1.6–11 VAR 1.8–12 VAR

3 0.8880 0.8946 0.8964 0.8955 0.8926 0.8913 0.8891

82.11% 82.15% 82.40% 82.44% 81.83% 81.76% 81.93%

1–14 VAR 0.8–11 VAR 1.2–15 VAR 1.4–13 VAR 1.4–13 VAR 1.6–13 VAR 2–15 VAR

4 0.8903 0.8914 0.8995 0.8979 0.8941 0.8901 0.8875

83.14% 82.84% 83.36% 83.17% 82.89% 82.49% 81.84%

1.2–11 VAR 1.2–13 VAR 1.2–8 VAR 1.4–13 VAR 1.6–10 VAR 1.8–10VAR 2–11 VAR

5 0.8852 0.8924 0.8930 0.8932 0.8904 0.8883 0.8862

83.09% 82.91% 83.28% 82.75% 82.49% 82.24% 82.09%

1–11 VAR 1–16 VAR 1.2–12 VAR 1.4–13 VAR 1.8–15 VAR 1.8–12 VAR 2–13 VAR

6 0.8832 0.8803 0.8932 0.8897 0.8933 0.8873 0.8866

82.27% 81.15% 82.33% 81.95% 82.54% 82.40% 82.09%

1.2–12 VAR 1.2–13 VAR 1.2–14 VAR 1.4–11 VAR 1.6–13 VAR 2–12 VAR 2.2–14 VAR

7 0.8838 0.8930 0.8964 0.8972 0.8950 0.8906 0.8895

82.48% 82.22% 82.63% 82.95% 82.85% 82.48% 82.33%

1–12 VAR 1–13 VAR 1.2–14 VAR 1.4–14 VAR 1.6–15 VAR 2–15 VAR 2–16 VAR

8 0.8813 0.8891 0.8902 0.8929 0.8897 0.8863 0.8826

82.44% 82.12% 82.22% 82.85% 82.23% 82.33% 81.64%

1–17 VAR 1–12 VAR 1.2–12 VAR 1.4–16 VAR 1.6–13 VAR 2–15 VAR 2.2–14 VAR

9 0.8827 0.8892 0.8943 0.8915 0.8883 0.8847 0.8796

82.23% 82.50% 83.11% 82.47% 82.33% 81.98% 81.32%

1–16 VAR 1–11 VAR 1.2–11 VAR 1.6–15 VAR 1.8–16 VAR 1.8–14 VAR 2.2–15 VAR

10 0.8811 0.8918 0.8946 0.8914 0.8871 0.8818 0.8763

82.12% 82.49% 82.69% 82.46% 82.04% 81.77% 81.07%

1–16 VAR 1–12 VAR 1.2–11 VAR 1.4–12 VAR 1.6–14 VAR 2–12 VAR 2.2–11 VAR

12 0.8813 0.8924 0.8907 0.8827 0.8798 0.8769 0.8719

81.88% 82.37% 82.11% 81.82% 81.27% 81.06% 80.80%

0.8–16 VAR 1–14 VAR 1.2–13 VAR 1.6–13 VAR 1.8–16 VAR 2–12 VAR 2.2–13 VAR

https://doi.org/10.1371/journal.pone.0194462.t002
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(m)-delay(τ), columns 3 and 4 show the AUCs and accuracies, respectively, and the last col-

umn, the number of selected features. In Tables 6 and 8 (Fixed Distance Method), the second

column represents the best values to multiply by the frame standard deviation (σ). In Tables 7

and 9 (FAN Method) the second column shows the percentage of neighbours to be considered.

The selected features appear in the same order as in the ranking described in section 2.5. In all

four tables, the cells containing features repeated in each of the combinations are highlighted

in grey. Fig 5 is a summary of the previous tables. There we find the number of times the fea-

tures are chosen for the best combinations dimension (m)-delay(τ).

Analyzing Fig 5, we can see that the selected features are different, depending on the

method chosen to define the distance threshold. In the Fixed Distance Method (see Tables 6

and 8), there are three variables that play an especially important role discriminating apnea

and nonapnea minutes: Vmax, Lmax and LAM. Vmax always comes first in the ranking in

Physionet. However, in the HuGCDN2014, although Vmax is among the top positions, LAM

Table 3. AUCs, accuracies, FAN and number of selected variables in Physionet with FAN method.

DELAY DIMENSION 1 3 4 5 6 7 8 9

1 0.8988 0.9074 0.9058 0.9143 0.9116 0.9055 0.9070 0.9088

83.22% 83.50% 83.52% 84.48% 84.70% 83.91% 84.16% 84.12%

20%–16 VAR 15%–15 VAR 20%–12 VAR 20%–15 VAR 20%–14 VAR 10%–15 VAR 7.5%–11 VAR 5%–15 VAR

2 0.9060 0.9061 0.9015 0.9076 0.9099 0.9130 0.9159

84.25% 84.44% 83.11% 84.88% 84.39% 84.41% 84.63%

17.5%–15 VAR 20%–12 VAR 5%–9 VAR 20%–12 VAR 5%–15 VAR 5%–12 VAR 5%–12 VAR

3 0.9048 0.9090 0.9136 0.9166 0.9187 0.9207 0.9191

84.32% 84.99% 85.33% 85.62% 85.88% 86.33% 85.50%

17.5%–13 VAR 5%–10 VAR 5%–12 VAR 7.5%–12 VAR 5%–13 VAR 5%–11 VAR 7.5%–11 VAR

4 0.9099 0.9178 0.9208 0.9215 0.9253 0.9217 0.9198

85.12% 85.68% 86.23% 86.22% 85.76% 85.73% 84.83%

7.5%–8 VAR 10%–8 VAR 7.5%–9 VAR 10%–8 VAR 5%–9 VAR 7.5%–9 VAR 5%–7VAR

5 0.9167 0.9212 0.9227 0.9213 0.9209 0.9205 0.9184

85.30% 86.19% 86.30% 85.96% 85.73% 85.72% 85.38%

5%–10 VAR 5%–9 VAR 5%–9 VAR 5%–7 VAR 5%–9 VAR 5%–9 VAR 5%–10 VAR

6 0.9170 0.9188 0.9183 0.9182 0.9186 0.9167 0.9148

85.02% 85.31% 85.27% 85.19% 85.33% 85.21% 84.98%

5%–10 VAR 5%–7 VAR 5%–8 VAR 5%–9 VAR 5%–9 VAR 5%–10 VAR 5%–9 VAR

7 0.9172 0.9213 0.9221 0.9211 0.9182 0.9160 0.9136

85.42% 85.68% 85.65% 85.54% 85.05% 85.03% 84.69%

7.5%–12 VAR 5%–7 VAR 5%–9 VAR 5%–9 VAR 5%–9 VAR 5%–9 VAR 5%–8 VAR

8 0.9156 0.9190 0.9191 0.9180 0.9154 0.9129 0.9098

85.30% 85.53% 85.63% 85.47% 85.11% 84.80% 84.16%

7.5%–12 VAR 5%–7 VAR 5%–8 VAR 5%–8 VAR 5%–8 VAR 5%–9 VAR 5%–8 VAR

9 0.9128 0.9158 0.9170 0.9142 0.9125 0.9079 0.9046

85.15% 85.32% 85.52% 85.08% 84.64% 84.62% 84.63%

7.5%–12VAR 5%–7 VAR 5%–7 VAR 5%–7 VAR 5%–8 VAR 5%–7 VAR 7.5%–9 VAR

10 0.9115 0.9144 0.9135 0.9119 0.9086 0.9051 0.9020

84.96% 84.85% 84.79% 84.67% 84.35% 84.49% 84.07%

7.5%–7 VAR 5%–7 VAR 5%–7 VAR 5%–7 VAR 5%–7 VAR 7.5%–9 VAR 7.5%–9 VAR

12 0.9052 0.9065 0.9063 0.9039 0.9010 0.8993 0.8969

83.87% 84.39% 84.31% 84.27% 84.12% 83.53% 83.43%

7.5%–7 VAR 5%–7 VAR 5%–10 VAR 17.5%–9 VAR 15%–13 VAR 15%–13 VAR 17.5%–12 VAR

https://doi.org/10.1371/journal.pone.0194462.t003
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comes first. From these results, we can see that the vertical structures (Vmax and LAM) in RPs

are in first place, and diagonal structures (Lmax) in second place, for classification purposes.

The latter can be justified because diagonal structures are also found in the RPs of nonapnea

minutes (Figs 6 and 7), due to de RSA component, although they are not as notable as in the

apnea minutes, where the CVHR is predominant. Furthermore, there are two variables that

play an important role for apnea minute quantification, and are considered after the feature

selection process in both databases. They belong to the group of features not used before in

this context: Clust and ENTW. The remaining selected features seem to be database depen-

dent. In Physionet, the RT, included in the subset of newly used features, is chosen for every

dimension, and T1, TT and T2 are also considered in 3–4 cases out of 7. The remaining vari-

ables are occasionally selected: ENTR, RPDE, RF and Trans, depending on the dimension.

However, in the HuGCDN2014 database, results are more stable. Practically the same set of

features is selected for all dimensions, except for TT, that is only chosen twice. The other

Table 4. AUCs, accuracies, distance threshold and number of selected variables in HuGCDN2014 with Fixed Distance Method.

DELAY DIMENSION 1 3 4 5 6 7 8 9

1 0.8004 0.7973 0.7702 0.7775 0.7533 0.7560 0.7518 0.7542

79.30% 78.99% 78.19% 78.58% 78.52% 78.96% 78.22% 78.46%

2–10 VAR 2–11 VAR 1.8–5 VAR 2.2–9 VAR 1.2–7 VAR 1.2–8 VAR 1.4–10 VAR 1.6–7 VAR

2 0.7812 0.7780 0.7762 0.7825 0.7857 0.7929 0.7854

77.80% 79.53% 78.44% 78.44% 78.77% 78.60% 79.23%

1.2–12 VAR 1–11 VAR 1.4–5 VAR 1.6–5 VAR 1.8–5 VAR 2–6 VAR 1.8–5 VAR

3 0.7693 0.7767 0.7724 0.7782 0.7843 0.8029 0.8024

77.46% 78.42% 79.15% 77.33% 77.70% 79.95% 78.86%

1.4–6 VAR 1.6–5 VAR 1.4–5 VAR 1.6–8 VAR 1.8–8 VAR 1.8–8 VAR 2.2–7 VAR

4 0.7772 0.7714 0.7813 0.7967 0.8079 0.8142 0.8184

78.22% 78.13% 78.18% 79.81% 79.66% 79.86% 80.69%

1.4–7 VAR 1.4–7 VAR 1.4–8 VAR 1.4–6 VAR 1.8–6 VAR 2–8 VAR 2–7 VAR

5 0.7796 0.7980 0.8068 0.8092 0.8078 0.8231 0.8253

78.29% 79.95% 79.17% 79.98% 79.70% 80.76% 80.71%

1.4–6 VAR 1–9 VAR 1.4–9 VAR 1.6–11 VAR 1.8–7 VAR 2–11 VAR 2.2–8 VAR

6 0.7673 0.7759 0.7910 0.8163 0.8256 0.8243 0.8225

78.95% 76.58% 78.63% 79.71% 80.82% 80.75% 80.57%

1.8–9 VAR 0.61–12 VAR 1.4–8 VAR 1.6–9 VAR 1.8–11 VAR 2–9 VAR 2.2–8 VAR

7 0.7678 0.7938 0.8033 0.8163 0.8277 0.8259 0.8238

78.96% 77.37% 80.15% 80.39% 80.88% 80.33% 80.45%

1.4–9 VAR 0.61–12 VAR 1.4–9 VAR 1.6–7 VAR 1.8–11 VAR 2–8 VAR 2.2–8 VAR

8 0.8139 0.8257 0.8286 0.8326 0.8311 0.8284 0.8275

79.93% 81.01% 80.04% 81.73% 82.00% 81.15% 80.34%

0.8–9 VAR 1–13 VAR 1.4–10 VAR 1.6–12 VAR 1.8–11 VAR 2–8 VAR 2.2–8 VAR

9 0.8028 0.8245 0.8301 0.8315 0.8297 0.8294 0.8282

79.94% 80.87% 80.51% 81.02% 80.28% 80.78% 79.84%

0.8–7 VAR 1–13 VAR 1.4–12 VAR 1.6–12 VAR 1.8–12 VAR 2–12 VAR 2.2–11 VAR

10 0.7807 0.8188 0.8239 0.8233 0.8211 0.8205 0.8205

79.41% 80.87% 80.54% 80.24% 81.02% 80.68% 80.18%

2.2–12 VAR 1–12 VAR 1.4–12 VAR 1.6–12 VAR 1.8–10 VAR 2–11 VAR 2.2–11 VAR

12 0.7876 0.7977 0.8087 0.8083 0.8061 0.8155 0.8008

80.30% 79.31% 79.78% 79.67% 79.77% 79.47% 78.81%

2.2–11 VAR 1.2–10 VAR 1.2–11 VAR 1.4–10 VAR 1.6–7 VAR 1.8–11 VAR 2.2–6 VAR

https://doi.org/10.1371/journal.pone.0194462.t004
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selected features, listed according to their position in the ranking are: ENTR, T2, Trans, L,

DET, RPDE and RF.

In the FAN Method, we find for both databases five variables with an outstanding role in

the classification process: Clust, LAM, RTmax, T1 and DET. Clust, originating in the complex

network theory, RTmax and T1, related to recurrence times, LAM, a vertical characteristic,

and DET, a diagonal one. According to Tables 7 and 9, DET is the preferred feature from the

diagonal ones, instead of Lmax. But, here, as in the Fixed Distance Method, the vertical feature

LAM stands out against the diagonal variable, DET. Especially interesting is the inclusion of

Clust and RTmax because neither is commonly used in the studies where RQA is applied to

HRV in sleep apnea. Comparing our outcomes with those obtained by Nguyen et al. [13], the

only authors that have introduced the FAN method for sleep apnea quantification, we can see

that DET, LAM and T1 are also included in the set of selected features. In particular, DET and

LAM are always chosen regardless of the percentage of neighbours considered, reinforcing

Table 5. AUCs, accuracies, FAN and number of selected variables in HuGCDN2014 with FAN method.

DELAY DIMENSION 1 3 4 5 6 7 8 9

1 0.7964 0.8248 0.8151 0.8128 0.8150 0.8226 0.8227 0.8188

80.89% 80.79% 79.80% 80.30% 80.48% 80.90% 80.78% 80.69%

15%–7 VAR 20%–11 VAR 17.5%–13 VAR 20%–10 VAR 20%–10 VAR 20%–10 VAR 17.5%–10 VAR 15%–10 VAR

2 0.8192 0.8217 0.8268 0.8345 0.8382 0.8437 0.8445

80.88% 81.59% 81.30% 81.27% 81.02% 81.33% 82.30%

15%–13 VAR 2.5%–10 VAR 2.5%–11 VAR 20%–11 VAR 20%–11 VAR 20%–12 VAR 12.5%–14 VAR

3 0.8240 0.8343 0.8353 0.8410 0.8449 0.8476 0.8486

81.09% 82.18% 82.04% 81.01% 80.93% 81.68% 82.11%

7.5%–11 VAR 5%–11 VAR 5%–10 VAR 7.5%–13 VAR 5%–9 VAR 10%–10 VAR 10%–10 VAR

4 0.8358 0.8417 0.8464 0.8407 0.8458 0.8541 0.8542

82.66% 82.81% 83.15% 82.09% 82.25% 82.49% 83.44%

5%–10 VAR 2.5%–5 VAR 2.5%–7 VAR 10%–15 VAR 12.5%–11 VAR 2.5%–8 VAR 5%–10 VAR

5 0.8443 0.8491 0.8520 0.8591 0.8585 0.8622 0.8581

82.59% 83.23% 83.12% 83.23% 83.61% 83.64% 84.18%

2.5%–5 VAR 5%–7 VAR 5%–9 VAR 5%–9 VAR 5%–8 VAR 5%–10 VAR 5%–6 VAR

6 0.8429 0.8478 0.8540 0.8571 0.8588 0.8574 0.8599

82.95% 83.02% 83.37% 83.49% 83.46% 83.57% 83.70%

5%–7 VAR 5%–8 VAR 5%–8 VAR 5%–6 VAR 5%–7 VAR 5%–10 VAR 5%–6 VAR

7 0.8439 0.8485 0.85644 0.8578 0.8528 0.8511 0.8495

83.28% 83.28% 83.49% 83.56% 83.73% 83.52% 83.52%

5%–7 VAR 5%–9 VAR 5%–7 VAR 5%–6 VAR 5%–10 VAR 5%–8 VAR 5%–10 VAR

8 0.8494 0.8515 0.85638 0.8526 0.8526 0.8521 0.8522

82.94% 83.33% 83.64% 83.76% 83.67% 83.69% 83.63%

5%–6 VAR 5%–7 VAR 5%–6 VAR 5%–10 VAR 7.5%–9 VAR 7.5%–9 VAR 7.5%–8 VAR

9 0.8503 0.8538 0.8518 0.8517 0.8518 0.8531 0.8536

83.06% 83.65% 83.40% 83.57% 83.76% 83.03% 84.04%

5%–6 VAR 5%–6 VAR 5%–7 VAR 5%–9 VAR 10%–8 VAR 7.5%–8 VAR 10%–7 VAR

10 0.8467 0.8500 0.8534 0.8520 0.8523 0.8528 0.8492

82.69% 82.91% 83.58% 83.17% 83.09% 83.09% 82.59%

5%–7 VAR 7.5%–8 VAR 5%–6 VAR 5%–8 VAR 7.5%–7 VAR 7.5%–7 VAR 7.5%–6 VAR

12 0.8450 0.8449 0.8474 0.8471 0.8488 0.8518 0.8508

81.63% 82.57% 83.26% 81.80% 83.08% 83.45% 83.10%

10%–9 VAR 20%–12 VAR 15%–8 VAR 17.5%–8 VAR 10%–8 VAR 10%–7 VAR 10%–9 VAR

https://doi.org/10.1371/journal.pone.0194462.t005
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Fig 3. AUCs and accuracies for different dimensions and delays in Physionet. (A and B) Fixed Distance Method. (C

and D) FAN Method.

https://doi.org/10.1371/journal.pone.0194462.g003

Fig 4. AUCs and accuracies for different dimensions and delays in HuGCDN. (A and B) Fixed Distance Method. (C

and D) FAN Method.

https://doi.org/10.1371/journal.pone.0194462.g004
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again the importance of diagonal and vertical measures in RPs. Fig 8 shows, for both databases,

RR series of an OSA-diagnosed patient, the per-segment manual scoring performed by the

practitioner, and the per-segment automatic scoring obtained by the selected parameters.

Fig 8A and 8B are obtained according to the best performing parameter values (see Tables 7

and 9).

In summary, we can see that the newly introduced features for sleep apnea quantification

play an important role in the classification process. These variables enrich the feature vector

and improve both AUCs and accuracies, compared to the results obtained with the most com-

monly used RQA measures. This implies that there is additional information in the RPs that

can be extracted to capture the intergroup differences. Especially important are the clustering

coefficient and two features related to the white vertical lines: the maximal Recurrence Time

(RTmax) and the Entropy of the White Vertical Lines (ENTRW). Furthermore, features

related to the white vertical lines are linked to recurrence time information. This strengthens

the relevance of these variables in the characterization of the physiological process. In fact,

Webber et al. [63] already pointed out the importance of recurrence times to quantify the peri-

odicities present in dynamical systems as they are able to reveal subtle characteristics of physi-

ological signals. However, results also show there are some features that provide less useful

information for classification purposes. Hence, they appear not to be very closely related to the

cardiorespiratory dynamic, as they are almost always ruled out in the feature selection process.

In particular, REC, TT and Trans.

The values and observed differences in the RQA measures between apnea and nonapnea

minutes were visualized as box-plots representing the median, the first and the third quartile

(see Figs 9 and 10). Only the selected features for the best combinations dimension (m)/delay

(τ) in Physionet (Fixed Distance and FAN) and HuGCDN2014 (Fixed Distance and FAN) are

included.

Table 6. Features selected in Physionet (Fixed Distance Method) in the best combinations dimension(m)/delay(τ).

m-τ σ AUC Acc(%) Selected Features Var

3–1 1.2 0.9012 83.19 Vmax Lmax ENTR LAM T2 RT Clust Trans TT RPDE 10

4–1 1.2 0.8995 83.28 Vmax Lmax RT T2 LAM TT Clust ENTR T1 9

5–1 1.4 0.8985 83.32 Vmax Lmax RT LAM Clust TT T2 7

6–1 1.6 0.8979 83.11 Vmax Lmax LAM RT Clust ENTW 6

7–1 1.6 0.8997 83.18 Vmax Lmax RT LAM ENTW Clust 6

8–1 1.6 0.8998 82.84 Vmax RT Lmax ENTW Clust LAM RPDE RF T1 TT 10

9–1 1.8 0.8972 83.24 Vmax RT Lmax Clust ENTW LAM T1 7

https://doi.org/10.1371/journal.pone.0194462.t006

Table 7. Features selected in Physionet (FAN Method) in the best combinations dimension(m)/delay(τ).

m-τ FAN(%) AUC Acc(%) Selected Features Var

3–7 7.5 0.9172 85.42 T1 LAM Clust RTmax DET RT TT Vmax ENTR T2 RPDE Lmax 12

4–7 5 0.9213 85.68 T1 LAM RTmax Clust DET RPDE ENTR 7

5–5 5 0.9227 86.30 T1 LAM RTmax DET ENTR Clust RPDE Lmax ENTW 9

6–4 10 0.9215 86.22 T1 Clust LAM Vmax RTmax Lmax TT RPDE 8

7–4 5 0.9253 85.76 Clust LAM RTmax T1 RPDE Lmax DET ENTR ENTW 9

8–4 7.5 0.9217 85.73 T1 Clust LAM RTmax Vmax DET RPDE Lmax ENTR 9

9–4 5 0.9198 84.83 Clust LAM T1 RTmax DET RPDE Vmax 7

https://doi.org/10.1371/journal.pone.0194462.t007
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Discussion

This is a novel study that performs a thorough exploratory analysis for sleep apnea detection

using RQA applied to HRV, in which the contributions to the state of the art are twofold. On

the one hand, we focus on finding reference values for the different parameters implied in the

RQA approach, namely dimension, delay and distance threshold, when HRV is analyzed in

the context of sleep apnea as, until now, there is no agreement about which values to choose

(see Table 1). This could be very helpful for authors who start using RQA measures for sleep

apnea detection through HRV analysis. In particular, according to our results, we suggest

using dimensions 7–8 and delays 4–5, for the embedding, and the FAN method with 5% of

neighbors. In fact, a wider range of dimensions, from 5 to 9, could be considered, as the system

performs similar with these values. Second, we have combined the commonly used RQA mea-

sures with other RQA features that, to the best of our knowledge, no author has used before to

discriminate between apnea and nonapnea minutes.

Although the main conclusions reached are independent of the database, in the results anal-

ysis we could see several disparities that may be a result of discrepancies in apnea scoring in

different sleep laboratories.

Reference values for RQA parameters

Defining values that yield the best results allows us to fulfill one of the main objectives of the

article: to further our understanding of sleep apnea characterization based on cardiac rate, and

to infer information about the underlying physiological processs. According to the dimensions

obtained after the results analysis, 7–8, we can see that dimensions proposed by Zbilut et al

[55] for biological systems, namely 10, or by Webber and Zbilut [63], from 10 to 20, were very

high and not suitable for all biological systems. As the dimension corresponds to the number

of variables expected to influence the system under study, it is worth analyzing the possible

cardiorespiratory variables that directly influence the HR control system. Nguyen et al. [13]

Table 8. Features selected in HuGCDN2014 (Fixed Distance Method) in the best combinations dimension(m)/delay(τ).

m-τ σ AUC Acc(%) Selected Features Var

3–8 0.8 0.8139 79.93 ENTR Vmax ENTW Lmax Trans L LAM TT T2 9

4–8 1 0.8257 81.01 ENTW Vmax T2 ENTR LAM Lmax L DET Trans TT Clust RF RPDE 13

5–9 1.4 0.8301 80.51 ENTR Vmax Trans Lmax LAM Clust DET ENTW L T2 RPDE RF 12

6–8 1.6 0.8326 81.73 LAM Lmax ENTW Vmax Trans Clust T2 DET RPDE L ENTR RF 12

7–8 1.8 0.8311 82.00 LAM Clust Lmax ENTW Vmax T2 DET Trans L RPDE RF 11

8–9 2 0.8294 80.78 LAM Vmax Clust Lmax T2 ENTW DET Trans ENTR RF RPDE L 12

9–9 2.2 0.8282 79.84 LAM Vmax Clust Lmax ENTW DET T2 ENTR Trans RF L 11

https://doi.org/10.1371/journal.pone.0194462.t008

Table 9. Features selected in HuGCDN2014 (FAN Method) in the best combinations dimension(m)/delay(τ).

m-τ FAN(%) AUC Acc(%) Selected Features Var

3–9 5 0.8503 83.06 LAM T1 RTmax Clust DET ENTW 6

4–9 5 0.8538 83.65 LAM T1 DET RTmax Clust RPDE 6

5–7 5 0.8564 83.49 LAM DET T1 ENTW RTmax Clust RPDE 7

6–5 5 0.8591 83.23 DET LAM Clust ENTW RTmax L T1 RT ENTR 9

7–6 5 0.8588 83.46 LAM T1 DET ENTW L RTmax Clust 7

8–5 5 0.8622 83.64 LAM DET Clust L T1 RTmax ENTW RT RPDE ENTR 10

9–6 5 0.8599 83.70 LAM T1 DET RTmax Clust RPDE 6

https://doi.org/10.1371/journal.pone.0194462.t009
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were the first authors who related the dimension to the cardiorespiratory variables. In their

work they propose 6 for the dimension, and the 6 variables they refer to are the following: car-

diac output [88], blood pressure [89], respiratory rate [90], SpO2, cardiac repolarization (QT

interval) [91] and central venous return [92]. Nevertheless, our results suggest that the

Fig 5. Number of times the features are chosen for the best combinations dimension (m)/delay(τ) in: (A)

Physionet-Fixed Distance, (B) Physionet-FAN, (C) HuGCDN2014-Fixed Distance and (D) HuGCDN2014-FAN.

https://doi.org/10.1371/journal.pone.0194462.g005

Fig 6. Recurrence plots with Fixed Distance Method. (A and B) Physionet: m = 5, τ = 3, 1.2σ. (C and D)

HuGCDN2014: m = 7, τ = 8, 1.8σ.

https://doi.org/10.1371/journal.pone.0194462.g006
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underlying system is affected by 7 to 8 variables. Thus, it is important to emphasise the com-

plex interactions that take place in physiological systems. For instance, Riedl et al. [93], based

on Granger causality [94], studied the dynamical changes produced in pregnant women suffer-

ing from pre-eclampsia. They concentrated on the analysis of the coupling between respira-

tion, systolic and diastolic blood pressure, and heart rate. According to their results, they

referred to the baroreflex sensitivity as one of the essential variables to be considered for diag-

nostic puposes. As, according to the findings of Carlson et al. [95], OSA patients show an

impaired baroreflex sensitivity, it seems reasonable to include this variable in the previous list.

On the other hand, as blood pressure itself contains two different types of information, namely

Fig 7. Recurrence plots with FAN method. (A and B) Physionet: m = 5, τ = 5, FAN: 5%. (C and D) HuGCDN2014: m

7, τ = 6, FAN: 5%.

https://doi.org/10.1371/journal.pone.0194462.g007

Fig 8. RR series of an OSA-diagnosed patient, per-segment manual scoring and per-segment automatic scoring (high

level = apnea; low level = nonapnea). (A) Physionet: m = 7, τ = 4, FAN: 0.05%. (B) HuGCDN2014: m = 8, τ = 5,

FAN:0.05%.

https://doi.org/10.1371/journal.pone.0194462.g008
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systolic and diastolic blood pressure, we could consider that the number of variables agrees

with the dimension proposed in this work. Moreover, further studies would be necessary to

define the complexity of the system in terms of structural and functional relationships between

the variables. It is also worth noting that the HRV is not only influenced by apnea, but also by

many additional factors, such as sleep stages, other diseases or medication, that may mask the

CVHR pattern [26].

The choice of the delay is trickier (see Figs 3 and 4) as outcomes change significantly

depending on its value. According to the delay reconstruction theorem, practically any delay

should be appropriate for the embedding [96]. Grassberger et al. [97] also stated that the delay

is a noncritical parameter and hence many delays should be suitable for the same system. But

in practice, we can infer from our results that not any delay is convenient for the embedding.

Values around 4–5 seem to be suitable to construct state vectors that are not autocorrelated.

Fig 9. Boxplots of the selected features in Physionet for the best combination dimension (m)/delay(τ). (A) Fixed

Distance Method. (B) FAN method.

https://doi.org/10.1371/journal.pone.0194462.g009

Fig 10. Boxplots of the selected features in HuGCDN2014 for the best combination dimension (m)/delay(τ). (A)

Fixed Distance Method. (B) FAN Method.

https://doi.org/10.1371/journal.pone.0194462.g010
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According to Fig 3C, the delay value chosen by Nguyen et al. [13] for the Physionet database,

namely 10, seems to be too high. However, they were able to improve the results obtained with

previous recurrence analysis-based approaches. They argued that the main reason, therefore,

was a different choice of RP parameters that effectively exploited the difference in nonlinear

and nonstationary dynamical information of HRV data during normal and apneic breathing.

In our opinion, this rise may have been partially due to the introduction of the FAN Method

and partially due to the sophisticated classification process. They used support vector

machines (SVM) and neural networks (NN), and a soft decision fusion rule to combine the

results of the classifiers. It is worth noting that our work, using only an LDA classifier and 9

features instead of 33, performs better. However, they only included the commonly used RQA

measures.

As we have stated in the previous reasoning, and in accordance with other authors, such as

Ngamga et al. [79], the selection of proper embedding parameters becomes complicated due to

the highly non-stationarity of cardiovascular dynamics. In any case, we recommend embed-

ding when RQA is applied to HRV in sleep apnea, because results are consistently better (see

Figs 3 and 4) than those obtained without embedding for a wide range of dimensions and

delays, especially in the FAN method.

The FAN method is more suitable for the distance threshold, for a variety of reasons: both

AUCs and accuracies are better than in the Fixed Distance Method, for both databases we find

similar values for dimension and delay that yield good results, and 5% of neighbours seems to

be an adequate value for most cases. Moreover, this implies that the number of neighbours is

important [48]. In our opinion, this result is related to the dynamic nature of the state space

that represents the underlying system. This dynamic behaviour implies that attractors and cou-

plings between the different variables that affect the system, also evolve with time. In this

regard, the FAN Method could be considered as a way to ‘normalize’ the state space. The fact

that the FAN Method is more convenient in this context agrees with other authors’ findings.

Webber and Marwan stated that, although using a fixed radius is the most commonly used

neighbourhood, the FAN Method is more suitable for nonstationary data, such as HRV data,

as it allows an analysis based on comparable recurrence structures [98]. On the other hand,

Nguyen et al. were the first authors who considered FAN better for HRV analysis in the con-

text of sleep apnea, since it does not require attractors to be of a similar volume for the com-

parison of state-space behaviours [13].

In summary, there are two crucial conclusions, drawn from the results obtained in the data

analysis. First, there is a practical interdependence between the different parameters involved

in the RQA approach, namely the embedding (dimension and delay) and the distance parame-

ters. Second, the system performance is completely dependent on the parameter selection.

Moreover, we consider the exhaustive exploratory analysis performed in this article of special

interest for authors who want to apply RQA to HRV analysis in the context of sleep apnea,

since they could apply the values proposed for the RQA parameters as reference values.

Physiological interpretation of selected features

According to the results, vertical and diagonal measures in RPs carry fundamental information

for classification purposes, regardless of the database, and of the method used to define the dis-

tance threshold. This coincides with the outcomes of Marwan et al. [56] when applying RQA

to HRV data. However, in the context of sleep apnea, Maier and Dickhaus [34] stated that the

appereance of the RPs for apnea and nonapnea minutes (Figs 6 and 7) suggested the impor-

tance of the diagonal structures to detect apneic events. In our opinion, the reason why they

obtained poor outcomes using RQA measures could be that they only considered the features

Characterization and detection of sleep apnea events using Recurrence Quantification Analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0194462 April 5, 2018 26 / 35

https://doi.org/10.1371/journal.pone.0194462


related to diagonal ones. In this way they left out other measures that contribute a great deal to

the system performance. Besides, they defined lmin = 4, the minimal length to consider a diago-

nal line, instead of 2, a more commonly used value for this parameter. Le et al. [11] and Karan-

dikar et al. [12] pointed out in their works the importance of the vertical lines. Using the Fixed

Distance Method applied to the Physionet database, they indicated that the most sensitive

RQA feature was Vmax, followed by LAM. However, in our opinion, both types of measures,

vertical and diagonal, are crucial to extract from the RPs as much information as possible, and

therefore, should be included in any study related to sleep apnea where RQA is applied to

HRV. The fact that vertical RQA measures are very sensitive to the embedding makes the

selection of dimension and delay an especially important issue [56].

Beyond the importance of vertical and diagonal structures to detect OSA events, it is neces-

sary to analyse the values obtained for the most relevant measures to interpret their physiologi-

cal significance. According to the results, LAM and Vmax, turn out to have a relevant role in

the apnea minutes discrimination. The values obtained for LAM and Vmax (see Figs 9 and 10)

are always higher for apnea minutes than for nonapnea minutes. This is due to the occurrence

of laminar states, i.e. states that do not change or change very slowly during apnea. LAM gives

information about the presence of laminar phases, and Vmax about their duration [45]. LAM

and Vmax are inversely proportional to the system complexity. This means that low LAM and

Vmax values, found in nonapnea minutes, imply high complexity in the system dynamics,

because the system stays briefly in a state similar to the previously occurring one [41]. This

behavior can be related to the operation of the cardiovascular regulatory sytem, which is influ-

enced by several factors. In healthy subjects, the cardiovascular system reacts inmediately to

system stimuli, thus decreasing the time the organism stays in the same or similar state. How-

ever, under pathological circumstances, the control system simplifies and the recurrences to

similar states increase [52]. This suggests a loss of complexity and more regularity in the sys-

tem in the presence of apnea. These results are in line with other authors’ findings, not only in

the context of the cardiovascular system: Mendez et al. [6] refer to the HRV loss of complexity

in sleep apnea, Javorka et al. [41] point out the complexity loss and simplification of heart rate

dynamics in patients with diabetes mellitus, and Subramaniyam et al. [99] report an increasing

degree of structural complexity in the EEG of normal subjects compared to those of patients

with epilepsy. Several authors have attempted to explain the causes of this behavior [27,95].

Trzebski et al. [27] studied the nonlinear dynamics of the cardiovascular systems in humans

exposed to repetitive voluntary apneas, modeling OSA, and their results also suggest a reduc-

tion in the complexity of the cardiovascular control system. One of the reasons they give is the

attenuation or inhibition of the arterial baroreflex by chemoreceptor stimulation. In fact, Carl-

son et al. [95] already stated that OSA patients show an impaired baroreflex sensitivity.

DET and Lmax also increase their values during apnea minutes because the diagonal struc-

tures, due to the RSA, are not as evident as those that appear in apnea phases related to the

CVHR (see Figs 6 and 7). Higher values during apnea minutes indicate higher predictability

and regularity of the system dynamics over time, as stated for Vmax and LAM [41,45]. For a

single beat, an increase in DET or Lmax means a higher probability of remaining in the same

state as the previous one.

The clustering coefficient gives the probability that two neighbours of any state are also

neighbours [72]. Hence, in a periodic system, this measure would take its largest value

(CC = 1). Therefore, assuming the increase of diagonal structures in the RPs during apnea

events (see Figs 6 and 7), we find higher values for apnea minutes. This measure is particularly

important because it has no direct counterpart in RQA [72]. Moreover, it highlights the impor-

tance of the quantification of the RP structure, and the topology of the phase space.
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In general, we can find the same behavior in the remaining features: higher values for apnea

minutes. This fact implies lower HRV, simplification of heart rate dynamics and greater

predictability and, ultimately, pathological conditions [41,52].

Limitations of the proposed method

There are two parameters whose effects were not assessed in our experiments, namely the

norm (Euclidean, minnorm and maxnorm) and the Theiler window. We always used the

Euclidean norm, as Marwan et al. [45] pointed out that there are small differences between the

Euclidean norm and the maxnorm. The minnorm is rarely used. As far as the Theiler window

is concerned, it was suggested by Theiler in 1986 [100], because it is common to find small dis-

tances between points in the reconstructed phase space that are close in time. The Theiler win-

dow is usually set to the value of the time delay τ or to (m-1)τ, according to Javorka et al. [53]

or to Marwan et al. [45], respectively. Thus, only points that are farther than τ from the diago-

nal are taken into account for the evaluation of the RQA measures [41]. As in most studies, no

Theiler window was used in our experiments. These two parameters are in general not as criti-

cal as those evaluated in the current work. Nevertheless, we will consider their assessment in

future work to study the possible effects on the results obtained for sleep apnea detection.

On the other hand, some limitations related to the databases need to be pointed out in this

study. One of the databases employed for the analysis was the widely used Physionet database,

which presents some drawbacks, e. g. a restricted number of subjects, whose age ranges from

27 to 63, or a small number of women included in the dataset (in groups A and B only one

each). The latter is especially important as, according to recent studies, there are potential gen-

der differences in HRV sleep apnea information [15]. In future studies, this consideration

should be taken into account for a differentiated learning and validation process. Moreover, it

would be desirable to include in the database apneic patients with various cardiovascular disor-

ders, that would probably have an impact on the system performance. Therefore, for a clinical

validation of the proposed approach, a larger database, including older participants, a higher

number of women, as well as cardiac patients, would be necessary. As far as the HuGCDN2014

is concerned, the lack of subjects representing mild and moderate OSA patients in the database

is also a limitation that should be considered.

Finally, it should be also pointed out that the difference in the sample frequency used in

both databases for the single-lead ECG signal, namely 100 (Physionet) and 200 Hz

(HuGCDN2014) could influence the measured distance between consecutive R-peaks.

Comparison with prior work

The performance of the OSA classification approach proposed in this article is compared with

existing literature. Table 10 shows a selection of the most representative methods that employ

the widely used Physionet database with the results obtained for per-segment classification as,

for meaningful comparison, results obtained from the same database have to be compared.

Unlike other comparative studies, particular relevance is given to the number of features

and the number of recordings used in the experiments. As shown in Table 10, Mendez et al.

[6–7] reach high accuracies. However, they rule out 20 recordings that do not satisfy certain

criteria of data quality. So, their method requires high-quality datasets, that are not normally

available, as physiological signals are, by nature, noisy. In this regard, our method is more

robust because it does not require a preselection of high quality data.

Other notable outcomes are those reached by Schrader et al. [8], de Chazal et al. [101], Kar-

andikar et al. [12] and Nguyen et al. [13]. In all these studies, the main weakness is the high-

dimension feature space, over 20. Cheng et al. [18] compare the performance obtained by
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classical RQA against heterogeneous RQA. In the latter approach, they propose segmenting

the state space into a hierarchical structure of local recurrence regions, i.e. in addition to the

RQA parameters (delay, dimension and distance threshold), they have to determine the opti-

mal number of subregions. Despite the increased method complexity, their results are worse

than ours. Moreover, there are authors, like Varon et al. [14] that derive two signals from the

ECG, RR and EDR. However, in our approach, only the RR interval series is obtained from the

ECG, thus simplifying the preprocessing stage.

From Table 10 we can conclude that the proposed method outperforms those proposed in

the most recent literature. In particular, the results obtained are better than the best ones

reached so far using RQA on sleep apnea [13]. So, we can consider our outcomes very promis-

ing. In this regard, it is important to highlight that, although other authors have questioned the

utility of RQA to yield additional insight into sleep apnea recognition from HRV [34], the

results obtained in this article demonstrate that applying adequate values for the RQA parame-

ters, and including other RQA measures in addition to the classic ones, yield better results

than other previous approaches.

In summary, outcomes indicate that the use of single-lead ECGs can perform well in the

detection of sleep apnea events. Nevertheless, more effort should be done to construct a model

and to define the most valuable features for a better understanding of the physiological phe-

nomena underlying sleep apnea.

Conclusions

This article presents a methodology for the automatic detection of sleep apnea events from sin-

gle–lead ECG. It is based on nonlinear cardiorespiratory dynamics and the contributions to the

state of the art are twofold. On the one hand, we focused on finding reference values for the differ-

ent parameters implied in the RQA approach, namely dimension, delay and threshold distance,

when RQA is applied to HRV in the context of sleep apnea as, until now, there is no agreement

about which values to choose. Therefore, two different databases were introduced in order to give

results a more generalizable character. In this respect, we have concluded, after intensive compu-

tational analysis of recurrence, that working with dimensions around 7–8 and delays about 4–5,

together with the FAN method with 5% of neighbours, yield the best results.

Second, we have combined the commonly used RQA measures with other RQA features

that, to the best of our knowledge, no author has used before to discriminate between apnea

Table 10. Comparison of per-segment OSA detection results on Physionet database.

Method Year N˚ of recordings N˚ of features AUC Acc(%)

Spectral features and LDA [8] 2000 70 30 - 88.31

Temporal and spectral RR and EDR features and LDA [101] 2003 70 88 - 90

Sample entropy, spectral features [9] 2007 70 6 - 72.9

Temporal and spectral features from RR and QRS area and kNN [6] 2009 50 10 - 88

WA and QDA [7] 2010 50 10 - 89.07

RQA of HRV and EDR, and Autoeural model [12] 2013 70 21 - 88.06

RQA and soft decision fusion rule (SVM and NN) [13] 2014 70 72 - 85.26

33 84.19

Principal components of QRS and orthogonal subspace projections (LS-SVM) [14] 2015 70 6 0.88 84.74

Hermite basis functions and LS-SVM [17] 2016 70 5 0.83 83.8

Heterogeneous recurrence analysis [18] 2016 35 11 0.91 82.5

RQA (FAN) and LDA (Proposed approach) 2017 70 9 0.9253

11 86.33

https://doi.org/10.1371/journal.pone.0194462.t010
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and nonapnea minutes. In this respect, we concluded that the newly used features, especially

the clustering coefficient (Clust), the entropy of the white vertical lines (ENTW) and the maxi-

mal recurrence time (RTmax), contribute valuable information about the presence or absence

of breathing pauses during sleep. So, these features can be considered especially interesting for

characterization purposes.

As far as the results are concerned, our system outperforms, using a relatively small set of

features, other methods reported in the most recent literature for fully automated algorithms.

In particular, the best results in Physionet are AUC = 0.93 and Acc = 86.33%, and in

HuGCDN2014, AUC = 0.86 and Acc = 84.18%.

In summary, we have proposed a method that performs well in the detection of sleep apnea

events and can help us further our understanding of the underlying process from a cardiac

rate point of view. The fact that we use only single-lead ECG signals and a classifier that shows

a good performance/complexity ratio encourages the development of home-based OSA

screening devices.
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